LØSNINGSFORSLAG

EKSAMEN I ST1201/ST6201 STATISTISKE METODER
Fredag 14. desember 2012
Tid: 09:00-13:00

Oppgave 1

Let X_{1}, \ldots, X_{100} be a random sample from a normal distribution with unknown expectation μ and variance $\sigma^{2}=25$. The hypothesis $H_{0}: \mu=0$ is tested against $H_{1}: \mu>0\left(H_{0}\right.$ is rejected for large values of $\bar{X})$. For $\mu=1$ the power of the test is $1-\beta(1)=0.5$.
a) What does the significance level α equal?

Solution. The power function (probability to reject H_{0}) is

$$
1-\beta(\mu)=\Phi\left(\frac{\sqrt{n}}{\sigma} \mu-z_{\alpha}\right) .
$$

In our case

$$
1-\beta(1)=\Phi\left(2-z_{\alpha}\right)=0.5
$$

i.e. $z_{\alpha}=2, \alpha=0.0228$.
b) Find the power $1-\beta(2)$ for $\mu=2$.

Solution.

$$
1-\beta(2)=\Phi\left(4-z_{\alpha}\right)=\Phi(2)=0.9772 .
$$

Oppgave 2

Two independent samples of sizes $n=200$ and $m=240$ are taken from normal distributions with unknown expectations μ_{X}, μ_{Y} and known variances $\sigma_{X}^{2}=1$ and $\sigma_{Y}^{2}=1.2$, respectively. $H_{0}: \mu_{X}=\mu_{Y}$ is being tested against $H_{1}: \mu_{X} \neq \mu_{Y}$.
a) Find the P-value if observed sample means are $\bar{x}=2.1$ and $\bar{y}=2.0$.

Solution. Under H_{0} the test statistic of the test

$$
\frac{\bar{X}-\bar{Y}}{\sqrt{\sigma_{X}^{2} / n+\sigma_{Y}^{2} / m}}
$$

has the standard normal distribution, therefore the P-value is

$$
\begin{gathered}
p(x, y)=P_{\mu_{X}=\mu_{Y}}\left(\left|\frac{\bar{X}-\bar{Y}}{\sqrt{\sigma_{X}^{2} / n+\sigma_{Y}^{2} / m}}\right| \geq \frac{\bar{x}-\bar{y}}{\sqrt{\sigma_{X}^{2} / n+\sigma_{Y}^{2} / m}}\right)= \\
=2 \Phi(-1) \approx 0.32
\end{gathered}
$$

Oppgave 3

The following result is well-known.
A. If the random vector (X, Y) has a bivariate normal distribution, and X, Y are uncorrelated (the correlation coefficient $\rho(X, Y)=0$), then X and Y are independent.

Consider the following example. Let X and T be independent random variables, X has the standard normal distribution, T takes on two values -1 and 1 , each with probability $1 / 2$. Let $Y=T X$.
a) Show that Y has a normal distribution and therefore both components X and Y of the bivariate random vector (X, Y) are normal.

Solution. Using the total probability formula, find the cumulative distribution function $F_{Y}(y)$ of Y :

$$
\begin{gathered}
F_{Y}(y)=P(Y \leq y)=P(Y \leq y \mid T=-1) P(T=-1)+P(Y \leq y \mid T=1) P(T=1)= \\
\qquad \begin{array}{c}
=P(T X \leq y \mid T=-1) P(T=-1)+P(T X \leq y \mid T=1) P(T=1)= \\
=P(-X \leq y \mid T=-1) P(T=-1)+P(X \leq y \mid T=1) P(T=1)= \\
\quad=P(-X \leq y) P(T=-1)+P(X \leq y) P(T=1)= \\
=\frac{1}{2}[P(X \geq-y)+P(X \leq y)]=P(X \leq y)=F_{X}(y)
\end{array}
\end{gathered}
$$

i.e. Y has the same distribution as X, the standard normal distribution.
b) Show that $\rho(X, Y)=0$ but X and Y are dependent.

Solution. We have

$$
\begin{aligned}
P(|X|>1) & =2 \frac{1}{\sqrt{2 \pi}} \int_{1}^{\infty} e^{-u^{2} / 2} d u>0 \\
P(|Y|<1) & =\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-u^{2} / 2} d u>0
\end{aligned}
$$

But, since $|X|=|Y|$,

$$
P(|X|>1,|Y|<1)=0
$$

therefore

$$
P(|X|>1,|Y|<1) \neq P(|X|>1) P(|Y|<1)
$$

i.e. X and Y are dependent. On the other hand,

$$
\operatorname{Cov}(X, Y)=E(X Y)=E\left(T X^{2}\right)=E T \cdot E X^{2}=0
$$

(since $E T=0$).
c) Explain, why the example of this problem is not in contradiction with proposition A.

Solution. Normality of both components of a bivariate random vector does not imply (generally speaking) that the vector has a bivariate normal distribution.

Oppgave 4

A researcher would like to find out (using ANOVA technique) whether a woman's name affects hers weight. The data (weights of 12 women) are given in the table.

Anna	Elsa	Julia
67	53	63
$\mathbf{4 8}$	61	69
50	72	51
52	$\mathbf{7 5}$	$\mathbf{5 4}$

a) Show the ANOVA table (without " P-value"-column).

Solution.

Source	df	$S S$	$M S$	F
Treatment	2	243	121.5	1.48
Error	9	738	82	
Total	11	981		

b) Test whether the differences among the average weights are statistically significant. The significance level $\alpha=0.05$.
Solution. Since

$$
\text { the observed } F=1.48<4.26=F_{1-\alpha, 2,9},
$$

H_{0} (all three expectations are equal) is not rejected.

Oppgave 5

0.57	0.84	0.61	0.39	0.42	0.71	0.28	0.32
0.63	0.51	0.48	0.82	0.69	0.77	0.53	0.56

The data, presented in the Table, are 16 independent observations from a continuous, symmetric (about the unknown expectation μ) distribution. Test the hyposesis $H_{0}: \mu=0.5$ versus $H_{1}: \mu>0.5$ (significance level $\alpha=0.05$),
a) using the large-sample sign test;

Solution. Let X be the number of observations greater than 0.5 . The large-sample sign test: H_{0} is rejected if

$$
Z=\frac{X-n / 2}{\sqrt{n / 4}} \geq z_{\alpha}
$$

In our case ($X=11, n=16$)

$$
Z=1.5<1.645=z_{\alpha}
$$

therefore H_{0} is not rejected.
b) using the large-sample Wilcoxon signed rank test.

Solution. The large-sample Wilcoxon signed rank test: H_{0} is rejected if

$$
z=\frac{w-n(n+1) / 4}{\sqrt{n(n+1)(2 n+1) / 24}} \geq z_{\alpha},
$$

where $w=\sum_{i=1}^{n} r_{i} z_{i}, r_{i}-$ rank of $\left|y_{i}-0.5\right|, z_{i}=1$ if $y_{i}>0.5$ and 0 otherwise.

Side 5 av 5

In our case

i	1	2	3	4	5	6	7	8
$\left\|y_{i}-0.5\right\|$	0.07	0.34	0.11	0.11	0.08	0.21	0.22	0.18
r_{i}	5	16	7.5	7.5	6	12	13.5	10
z_{i}	1	1	1	0	0	1	0	0
i	9	10	11	12	13	14	15	16
$\left\|y_{i}-0.5\right\|$	0.13	0.01	0.02	0.22	0.19	0.27	0.03	0.06
r_{i}	9	1	2	13.5	11	15	3	4
z_{i}	1	1	0	1	1	1	1	1

$$
w=97
$$

and

$$
z=1.5<1.645=z_{\alpha} .
$$

Thus H_{0} is not rejected.

