
-

Stochastic population models

Steinar Engen

Department of Mathematical Science

Norwegian University of Science and Technology

7491 Trondheim Norway

Revised: November 29, 2011



2



Contents

1 Populations without density-regulation 11

1.1 The deterministic product model . . . . . . . . . . . . . . . . 11

1.2 Environmental effects on population growth . . . . . . . . . . 13

1.3 The lognormal distribution . . . . . . . . . . . . . . . . . . . . 14

1.4 The stochastic growth rate and environmental variance . . . . 16

1.5 Estimation and prediction in the multiplicative model . . . . . 18

1.6 Demographic stochasticity . . . . . . . . . . . . . . . . . . . . 22

1.7 Demographic and environmental stochasticity acting together 24

1.8 * Quantifications of the effects of stochasticity . . . . . . . . . 27

1.8.1 Reduction in growth due to stochasticity . . . . . . . . 27

1.8.2 Stochastic Alle-effect . . . . . . . . . . . . . . . . . . . 27

1.8.3 Temporal correlations in the environmental noise . . . 30

1.9 Fitness in a stochastic environment . . . . . . . . . . . . . . . 31

1.9.1 The stochastic growth rate as a measure of fitness . . 31

1.9.2 * Bet-hedging . . . . . . . . . . . . . . . . . . . . . . . 32

1.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Density-regulated populations 37

2.1 The concept of density-regulation . . . . . . . . . . . . . . . . 37

2.2 Return time to equilibrium and strength of density-regulation 38

2.3 The deterministic logistic model . . . . . . . . . . . . . . . . . 40

2.4 The log-linear model and Gompertz type of density-regulation 40

2.5 The theta-logistic model . . . . . . . . . . . . . . . . . . . . . 41

3



4 CONTENTS

2.6 Stochasticity and density-regulation . . . . . . . . . . . . . . 43

2.7 Density-dependence in the demographic and environmental

variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.1 The distribution of vital rates . . . . . . . . . . . . . . 46

2.7.2 A logistic model with Poisson distributed contributions 46

2.7.3 * Environmental fluctuations in r and K . . . . . . . . 47

2.7.4 * A model with density-regulated fecundity . . . . . . 49

2.7.5 * An example of demographic covariance . . . . . . . . 51

2.8 Estimation of demographic and environmental components. . . 51

2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Diffusion theory 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The mean and variance function for discrete processes . . . . . 58

3.3 The infinitesimal mean and variance of a diffusion . . . . . . . 61

3.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 * Some examples of transformations . . . . . . . . . . . . . . . 67

3.6.1 Log-transformation of a model with Gompertz type of

density-regulation . . . . . . . . . . . . . . . . . . . . . 67

3.6.2 Transformations of the theta-logistic model . . . . . . . 67

3.6.3 Isotrophic scale transformation. . . . . . . . . . . . . . 68

3.7 Populations modeled by Brownian motions and OU-process . . 69

3.8 Computations in diffusion models . . . . . . . . . . . . . . . . 70

3.8.1 The Green function and related functions . . . . . . . . 70

3.8.2 The probability of ultimate extinction . . . . . . . . . 72

3.8.3 The expected time to extinction and some related results 74

3.8.4 Predictions and stationary distributions . . . . . . . . 77

3.9 Some stationary distributions . . . . . . . . . . . . . . . . . . 79

3.9.1 The logistic model . . . . . . . . . . . . . . . . . . . . 79

3.9.2 The theta-logistic model . . . . . . . . . . . . . . . . . 80

3.9.3 The Beverton-Holt model . . . . . . . . . . . . . . . . 82



CONTENTS 5

3.10 Quasi-stationary distributions . . . . . . . . . . . . . . . . . . 83

3.11 Extinction and population viability . . . . . . . . . . . . . . . 86

3.11.1 Definitions of population viability . . . . . . . . . . . . 86

3.11.2 The exponential approximation for density regulated

populations . . . . . . . . . . . . . . . . . . . . . . . . 87

3.11.3 Extinctions in populations without density regulation . 89

3.11.4 Some results on the scaling of the time to extinction . 95

3.12 Autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.13 * Conditional diffusions . . . . . . . . . . . . . . . . . . . . . . 99

3.14 Stochastic differential equations . . . . . . . . . . . . . . . . . 101

3.15 Autocorrelated noise . . . . . . . . . . . . . . . . . . . . . . . 104

3.15.1 Diffusion approximations to discrete models with au-

tocorrelated noise . . . . . . . . . . . . . . . . . . . . . 104

3.15.2 Diffusion approximations to continuous models with

colored noise . . . . . . . . . . . . . . . . . . . . . . . 107

3.16 The accuracy of the diffusion approximation . . . . . . . . . . 110

3.17 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Age-structured populations 119

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Deterministic theory . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.1 Population growth rate and stable age-distribution . . 120

4.2.2 Reproductive value . . . . . . . . . . . . . . . . . . . . 122

4.2.3 Matrix formulation . . . . . . . . . . . . . . . . . . . . 125

4.3 Stochastic age-structured model . . . . . . . . . . . . . . . . 126

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.2 Stochastic projection matrices . . . . . . . . . . . . . . 127

4.3.3 Reproductive value dynamics . . . . . . . . . . . . . . 128

4.3.4 Environmental and demographic variance . . . . . . . . 130

4.3.5 Simulation examples . . . . . . . . . . . . . . . . . . . 132

4.3.6 Fluctuations in age-structure . . . . . . . . . . . . . . 135

4.3.7 Estimating demographic and environmental variance . 137



6 CONTENTS

4.3.8 Density-regulation . . . . . . . . . . . . . . . . . . . . 139

4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Some applications 147

5.1 Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.2 Diffusion model . . . . . . . . . . . . . . . . . . . . . . 149

5.1.3 Some harvesting strategies . . . . . . . . . . . . . . . . 151

5.2 Population viability analysis . . . . . . . . . . . . . . . . . . . 157

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2.2 Population Prediction intervals . . . . . . . . . . . . . 157

5.2.3 Frequentistic population prediction interval . . . . . . . 159

5.2.4 Bayesian population prediction intervals . . . . . . . . 160

5.2.5 A simple example of Bayesian population prediction

intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Genetic drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3.1 A two-dimensional diffusion model . . . . . . . . . . . 164

5.3.2 Effective population size . . . . . . . . . . . . . . . . . 168

5.3.3 Haploid model with age-structure . . . . . . . . . . . . 170

5.3.4 Diploid two-sex model with overlapping generations . . 171

5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Spatial models 177

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.2 The meta-population approach . . . . . . . . . . . . . . . . . 180

6.3 The Moran effect . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.3.1 Correlated time series . . . . . . . . . . . . . . . . . . 182

6.3.2 Correlation in linear models in continuous time . . . . 186

6.3.3 Correlation in non-linear models in continuous time . . 188

6.4 Continuous spatio-temporal models . . . . . . . . . . . . . . . 192

6.4.1 Population density function and spatial autocorrela-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



CONTENTS 7

6.4.2 Measures of spatial scale . . . . . . . . . . . . . . . . . 193

6.4.3 Gaussian and log-Gaussian density fields . . . . . . . . 194

6.4.4 Effect of permanent heterogeneity in the environment . 197

6.4.5 The effect of dispersal in homogeneous linear models . 202

6.5 Poisson point process in space . . . . . . . . . . . . . . . . . . 206

6.5.1 The homogeneous Poisson process in space . . . . . . . 206

6.5.2 The inhomogeneous Poisson process . . . . . . . . . . . 207

6.6 Point processes with dependence between individuals . . . . . 208

6.6.1 The covariance function for a point process . . . . . . . 209

6.6.2 Overdispersion in the point process defined by log-

Gaussian field . . . . . . . . . . . . . . . . . . . . . . . 210

6.6.3 Mean and variance of counts in an area . . . . . . . . . 213

6.7 Relations to Taylor’s scaling laws . . . . . . . . . . . . . . . . 215

6.7.1 General expression for the variance as function of the

mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.7.2 Approximations for small and large sampling areas . . 216

6.7.3 The slope in Taylor’s scaling law . . . . . . . . . . . . 217

6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Community models 223

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.2 Diversity and similarity . . . . . . . . . . . . . . . . . . . . . . 225

7.3 Some history of species abundance models . . . . . . . . . . . 227

7.4 Neutral species abundance models . . . . . . . . . . . . . . . . 229

7.4.1 The genetic neutral model with random mutations . . 229

7.4.2 Fisher’s log series distribution . . . . . . . . . . . . . . 231

7.4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 234

7.4.4 Hubble’s neutral model . . . . . . . . . . . . . . . . . . 236

7.5 Independent species dynamics . . . . . . . . . . . . . . . . . . 241

7.6 Homogeneous community models . . . . . . . . . . . . . . . . 246

7.6.1 Colonizations and extinctions . . . . . . . . . . . . . . 246

7.6.2 Homogeneous diffusion models . . . . . . . . . . . . . . 248



8 CONTENTS

7.7 Heterogeneous models . . . . . . . . . . . . . . . . . . . . . . 260

7.8 Species area curves . . . . . . . . . . . . . . . . . . . . . . . . 264

7.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 264

7.8.2 Rarefaction . . . . . . . . . . . . . . . . . . . . . . . . 266

7.8.3 Observed species number under random sampling us-

ing abundance models . . . . . . . . . . . . . . . . . . 267

7.8.4 Island size curves . . . . . . . . . . . . . . . . . . . . . 268

7.8.5 Curves produced by quadrat sampling . . . . . . . . . 275

7.9 Temporal and spatial analysis of similarity . . . . . . . . . . . 280

7.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 280

7.9.2 Spatio-dynamical species abundance models . . . . . . 281

7.9.3 Decomposition of the variance . . . . . . . . . . . . . . 282

7.9.4 Correlation and indices of similarity . . . . . . . . . . . 285

7.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288



CONTENTS 9

PREFACE

These are notes that will serve as a text for the course in ’Stochastic popula-

tion models’ at the Department of Mathematical Sciences at NTNU, Norway.

The department initiated a new bachelor program in biomathematics in 2003

and this is a course planned for students the third year choosing the direction

of ’Modelling in biology’. However, this course will also be quite useful for

students going into ’Statistics in medicine’ and ’Theoretical biology’ as well

as master student in biology with required mathematical background since

basic knowledge on how to do stochastic modelling of biological populations

or systems of populations is an important part of quantitative studies in life

science in general.

The mathematical and statistical background required is that obtained dur-

ing the first two years of the program. The first year these students has two

basic courses in mathematical analysis, one in probability, one in statistics

and one course in biological computations which focuses on using computer

software (R) to do statistics and stochastic simulations. The second year they

have a course in applied statistics, an introductory course in stochastic pro-

cesses as well as one in mathematical genetics. In addition to courses given

by the department these students also have courses given by the department

of biology and the medical faculty.

These lectures focus on modelling of population dynamics, mostly dealing

with one single species. Stochastic modelling of systems of two species are

rare in the literature and leads often to rather difficult mathematical prob-

lems, although there is a large literature on deterministic predator prey mod-

els an competition systems. Two species systems are therefore not dealt with

in much details. On the other hand, modelling of communities with many

species has a long scientific history and there is a growing interest in stochas-

tic models. Such models also have some analogs in population genetics. Some

interesting results for communities can be dealt with in a rather simple way

basing on results for a single species. The reason why this may be simpler

than two species systems is that the interactions between the species now
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can be summarized in stochastic terms instead of going into a detailed de-

scription of how each particular species interact with all the others, which

would tend to end up in a description with too many parameters to be of

practical interest.

This is mainly meant to cover a basic course in stochastic population models

and is not a course in statistics. The models and results presented here are,

however, important for doing correct statistical analysis of population data.

Some simple examples of statistical methods are given, but only in cases

where the population size is estimated without error. Statistical inference

based on data with sampling errors, which is the most common type of

data, can be done using methods constructed for this purpose like state-space

models, Kalman filtering, or the bayesian approach analyzed by Markov chain

Monte Carlo methods. These methods are dealt with in general courses in

statistics.

Steinar Engen

Department of Mathemtical Sciences

The Norwegian University of Science and Technology

Trondheim, Norway



Chapter 1

Populations without

density-regulation

1.1 The deterministic product model

In this chapter we shall deal with populations reproducing once a year which

is a realistic assumption for a large number of organisms. However, popula-

tions reproducing continuously in time (for example humans or species in the

tropics) may be studied by performing a sensus once a year leading to the

same kind of data. The basic unit in population dynamics is the individual.

Each individual contribute to the population density and to the change in

population size from one generation to the next. The basic vital rates de-

termining population changes are the individuals survival into the next year

and their reproduction. If nothing is mentioned about the sex of individuals

we will always deal only with the female segment of the population. For

large populations, however, we may often obtain a realistic description of the

dynamics without going into details on the individuals vital rates. In a large

populations the differences between the individuals may not be important by

the law of large numbers, only their mean values across the population.

If the vital rates are not affected by the density of individuals we say that the

population is not density-regulated. For large populations living in a stable

11



12 CHAPTER 1. POPULATIONS WITHOUT DENSITY-REGULATION

environment, a realistic description may be that the population size the next

year simply is given by a multiplication of the size the previous year by a

constant factor

Nt+1 = λNt

where Nt denotes the population size at time t and λ is the constant deter-

mining the growth of the population. The population is increasing, constant

or decreasing according to the value of λ being > 1, one or < 1. Starting

with time t = 0 we then find simply by recursion

Nt = λtN0 = N0e
rt

where r = lnλ is called the population growth rate. The population is

increasing, constant or decreasing for r > 0, r = 0 or r < 0, respectively. If

r < 0 the population will eventually go extinct. If we consider the population

to be extinct as the population size reaches size one, the time to extinction,

say T , is for negative growth rates determined by N0e
rT = 1 giving T =

− ln(N0)/r. For example, a population of 1000 individuals with λ = 0.99

and r = −0.01005... will go extinct after 687 years, while if λ = 0.9 it is

extinct after 66 years.

Since effects operating on populations often are modelled by multiplications

(multiplicative effects) we often get simpler mathematical relations by work-

ing on logarithmic scale. Here we will always use natural logarithms. Writing

Xt = ln(Nt) for the log population size, the above multiplicative model takes

the simple form Xt+1 = Xt + r giving

Xt = X0 + rt

so that log population size is a straight line with slope r when plotted against

time.

Although this deterministic description is not realistic for real populations it

is a good approximation for large populations in a very stable environment,

for example growing of plankton populations in a laboratory up to the time

when the population reaches a density large enough for density regulation to

operate.
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1.2 Environmental effects on population growth

The factor λ is determined by the mean survival and reproduction rates of the

individuals. In natural populations these rates will almost always be affected

by a number physical or biological factors. Which factors that are important,

and how large effect they have, varies a lot between species. For example,

snow depth and temperature during winter may have only a little effect on a

brown bear, a larger effect on small rodents, and perhaps even a larger effect

on some bird species. In other words, some species may be almost unaffected

by the environment, while others will show large changes in population size

generated by fluctuations in the environment. Clearly, temporal fluctuations

in the environment are also very different from location to location. Typically,

fluctuation in the tropics are smaller than fluctuations in areas with large

seasonal effects. Even death rates in human populations may be affected by

the environment. For example, different contagious diseases that may affect

the death rate, especially among old people, are not equally common each

year and varies geographically.

Even if we often can isolate some few factors as the major factors affecting

the vital rates of a population it is generally a difficult task. Such studies are,

however, an important part of population dynamics, for example in studies

of which effects climate changes is expected to have on natural populations.

However, we can generally write symbolically the environment affecting a

population as an environmental vector z = (z1, z2, . . .) where each component

is some factor, physical or biological, that may affect the vital rates. We

may obtain large insight into the dynamics of populations without studying

each component of z separately, but rather just plug into our model that

the factor λ in practice is some function of the environmental vector. The

environmental vector is typically stochastic, varying between years in a more

or less unpredictable way. Writing Λt for the factor operating at time t which

is formally some function of z, we can now forget the environmental vector

and concentrate on just modelling the sequence Λt as a time series, keeping

in mind that its properties are generated by fluctuations in the environments.
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In analogy with the deterministic model we write St = ln Λt giving

Xt = X0 +
t−1∑
u=0

Su.

In many cases it may be realistic to assume that the sequence of stochastic

rates St is a sequence of independent identically distributed random vari-

ables. In other cases, however, the sequence may be autocorrelated, either

due to autocorrelations in the underlying vector z or some properties of the

populations like age structure or migration.

1.3 The lognormal distribution

Since multiplicative effects are common in biological systems, the above mul-

tiplicative model being an example, the lognormal distribution has an im-

portant role in biology in general. As we have seen, performing a log trans-

formation leads to additive models. When stochastic variable are added we

know, through different versions of the central limit theorem, that the sums

are approximately normally distributed. Transforming back to the original

scale we then obtain the lognormal distribution.

Formally, let Y be normally distributed with mean µ and variance σ2. Shortly

we then write that Y is N(µ, σ2). Let Y be the log transform of a variable

V , that is Y = lnV and V = exp(Y ). We then say that V is lognormally

distributed with parameters µ and σ2 and write shortly , V is LN(µ, σ2).

The probability density of Y is the Gaussian curve

fY (y) =
1√
2πσ

e−
(y−µ)2

2σ2

on the real axis. Applying the transformation formula for stochastic variables

we find that the distribution of V is the corresponding lognormal distribution

shown in Fig.1.1

fV (v) =
1√

2πσv
e−

(ln v−µ)2

2σ2
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Figure 1.1: The lognormal distribution with mean 1, that is µ = −σ2/2, for

three values of σ2.
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for v > 0. Notice that since aY + b is N(aµ + b, a2σ2), it follows that

eaY+b = ebV a is LN(aµ + b, a2σ2), so that cV a is LN(aµ + ln c, a2σ2). In

particular we see by inserting a = 1 that cV is LN(µ+ ln c, σ2), that is, the

variance parameter σ2 is not affected by a change of scale.

The mean and variance of the lognormal is most easily found from the mo-

ment generating function of Y which is known to be

MY (t) = EeY t = eµt+σ
2t2/2.

Writing ν and τ 2 for the mean and variance of the lognormal distribution we

then find

ν = EV = EeY = eµ+σ2/2,

where we have plugged in t = 1 in the moment generating function. In the

same way we find

EV 2 = Ee2Y = e2µ+2σ2

and finally the variance

τ 2 = EV 2 − (EV )2 = e2µ+σ2

(eσ
2 − 1).

Hence, the squared coefficient of variation for the lognormal distribution is

CV 2 = τ 2/ν2 = eσ
2 − 1.

1.4 The stochastic growth rate and environ-

mental variance

Let us first assume that the sequence Λt and St are both sequences of inde-

pendent variables with constant mean and variance. Then, conditioning on

the initial population size N0 = n0 we find that the expected population size

after time t is

ENt = n0λ
t = n0e

rt
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where we now have generalized interpretation of λ to be the the expectation

EΛ (we omit the subscript for Λ since they all have the same distribution).

The expected population size then grow exponentially with a rate r = lnλ =

ln(EΛ), which we now shall call the deterministic growth rate.

On the log scale we can express the mean slope of the curve on the interval

from 0 to t as
1

t
(Xt −X0) =

1

t

t−1∑
u=0

Su = S̄.

Hence, the mean and variance of this slope is s = ES and σ2
s/t, respectively,

where σ2
s = var(S). As t tends to infinity the slope then approaches the

constant s which is called the stochastic growth rate of the population.

Now, let us compare the stochastic growth rate s with the deterministic

growth rate r = lnλ for the expected population size. Let us first assume

that the St are N(s, σ2
s). Then Λ is LN(s, σ2

s). From the properties of the

lognormal distribution it then follows that

s = r − σ2
s/2.

In the same model we find

var(Nt+1|Nt = n) = n2σ2
e

where σ2
e = var(Λ) is called the environmental variance. For the lognormal

model we see, again using properties of the lognormal distribution, that

σ2
s = ln(1 + σ2

e/λ
2).

More generally we can use the Taylor expansion

ln Λ = lnλ+ ln

[
1 +

(
Λ− λ
λ

)]
= r +

(
Λ− λ
λ

)
− 1

2

(
Λ− λ
λ

)2

+ . . . .

This leads to (exercise 5) σ2
s ≈ σ2

e/λ
2 and s ≈ r − 1

2
σ2
e/λ

2 provided that the

fluctuations in (Λ− λ)/λ are small. Further, if λ ≈ 1, the two variances are

approximately equal so that s ≈ r − σ2
e/2.
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The relation between the stochastic and the deterministic growth rate has

some interesting and rather surprising consequences. As an example con-

sider a population with deterministic growth rate r = 0.01. The expected

population size will then tend to infinity as t approaches infinity. If the envi-

ronmental variance is σ2
e = 0.04, then the stochastic growth rate is s = −0.01.

Hence, as time approaches infinity the slope approaches the constant value

−0.01 which means that the population is certain to go extinct although its

expected value approaches infinity. In Fig.1.2 we show simulations of this ex-

ample. The result is definitely not just a mathematical artifact but a highly

real effect of stochasticity. If the stochasticity of the environment increases

without affecting the mean vital rates so that r = ln(EΛ) is kept constant,

then the stochastic growth rate will decrease while the expected population

sizes are unaffected. In order to understand this result intuitively we have

to look deeper into the lognormal distribution. This is a very skew distribu-

tion and as t increases the skewness also increases towards infinity. For large

values of t it is therefore possible that there is some very small probability

that the population is extremely large, actually large enough to give a large

expected value. The whole probability mass, however, except this very small

proportion approaching zero, may still be concentrated at smaller values and

represent extinction with probability 1.

The above approximation have been derived using the first terms of the

Taylor expansion. There will in general be a decrease in the stochastic growth

rate as the stochasticity increases. A more accurate approximation than the

one derived here from the normal distribution is given in 1.8.1.

1.5 Estimation and prediction in the multi-

plicative model

We consider the situation where the population size is known at n + 1 sub-

sequent points of time t = 0, 1, 2, . . . , tn. Let the observed values of log

population size be X0, X1, . . . , Xn and assume that the Si are approximately
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Figure 1.2: Simulation of 10 sample paths using the above stochastic model

with r = 0.01 and σ2
e = 0.04. The solid straight line shows the deterministic

growth, while the dotted line is the mean stochastic growth.
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normally distributed. The process Xi is then a random walk with normally

distributed increments and the differences Di = Xi −Xi−1, for i = 1, 2, . . . n

are independent normal variables with mean s and variance σ2
s ≈ σ2

e . Hence,

the maximum likelihood estimate of s is the mean value

ŝ =
1

n

n∑
i=1

Di = (Xn −X0)/n.

Hence, we se that for this model the estimator for the stochastic growth rate

depends only on the first and last observation, the others being redundant.

According to standard normal theory this estimator is N(s, σ2
s/n). Further,

the unbiased and sufficient estimator for the environmental variance is

σ̂s
2 =

1

n− 1

n∑
i=1

(Di − ŝ)2

which is independent of s∗ and distribution given by the fact that σ̂s
2(n −

1)/σ2
s is χ2-distributed with n − 1 degrees of freedom. We can further find

confidence intervals for s and σ2
s based on Student’s T-distribution and the

χ2-distribution exactly as in the analysis of a single sample from a normal

distribution with unknown mean and variance.

These results can be utilized to find prediction intervals for future population

sizes provided that the population size is large enough for the possibility

of extinction to be ignored. Conditioned on the last observation Xn the

population size Xn+m at a future time n + m, which can be written on the

form Xn+
∑n+m
i=n+1 Di, is N(Xn+ms,mσ2

s). We can find a prediction interval

for Xn+m by first observing that Xn+m − Xn − mŝ is normally distributed

with zero mean and variance mσ2
s +m2σ2

s/n = σ2
s(m+m2/n). It follows from

Student-Fisher’s well known result that

Tn−1 =
Xn+m −Xn −mŝ
σ̂s
√
m+m2/n

has Student’s T-distribution with n− 1 degrees of freedom so that

P (−tn−1,α/2 < Tn−1 < tn−1,α/2) = 1− α
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Figure 1.3: Time series observations of a population of Sea Eagles over 21

years together with 20 prediction intervals (90 and 99 %) and predicted

median 20 years ahead.

where tn−1,α/2 denotes the α/2-quantile of the T-distribution with n − 1

degrees of freedom. Plugging in the expression for Tn−1 and solving the

inequalities with respect to the future observation Xn−m, we finally find the

prediction interval for the log population size

P (Xn+mŝ−tn−1,α/2σ̂s
√
m+m2/n < Xn+m < Xn+mŝ+tn−1,α/2σ̂s

√
m+m2/n) = 1−α.

Applying the exponential function over the whole inequality then yields the

corresponding prediction interval for the population size.

In practical applications it is informative to plot the observed population

size and the interval limits as functions of time for different values of α. An

example of this is shown in Fig.1.3.
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1.6 Demographic stochasticity

We now return to a more thorough analysis of the multiplicative factors

Λt. When populations are small, the stochastic fluctuations in survival and

fecundity between individuals within years can not be ignored, and we now

proceed to analyze the consequences of this kind of stochasticity which is

called demographic stochasticity.

The changes in population size from one generation to the next is determined

by the survival or death of each individual, as well as the number of surviving

offspring each individual contribute with into the next generation. We shall

later deal with age-structured models, assuming that the vital rates vary be-

tween age-classes. Here we deal with the simpler situation where individuals

reach the adult state during a year and the population is sensused just before

reproduction. All individuals are then adults with the same mean vital rates.

Notice however, that this is a model with overlapping generation since each

individual may have an adult survival close to one and have a lifetime of

many generations.

For a given population size N at one generation there are N contributions

from the individuals adding up to give the population size N+∆N in the next

generation. The contribution from one particular individual is the number

of offspring it produces that survive into the next generation plus 1 if the

individual itself survives. Writing w1, w2, . . . , wN for these contributions,

which is the individual fitness for the individuals in the population, we have

N + ∆N =
N∑
i=1

wi = NEw +
N∑
i=1

di,

where Ew is the mean of the wi and the di = wi−Ew are stochastic variables

with zero means. Since N + ∆N = ΛN we see that Λ = 1
N

∑
wi = w̄

and Ew = λ. In older literature on birth and death processes one usually

assumes that the contributions within a season are stochastically independent

for a given population size. This is a realistic assumption if there is no

environmental vector z generating between years fluctuations in the mean
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contributions, that is, if we assume z to be a constant. In such models the

variance var(wi) = var(di) = σ2
d is called the demographic variance of the

process. In a density regulated population the parameter Ew as well as σ2
d

may depend on the population size N .

Using the assumption that all N contributions are stochastically independent

for a constant z, that is, there is no common factor acting on the Di, we find

var(N + ∆N |N) = var(∆N |N) = Nσ2
d

by the law of the variance of a sum of independent variables. For the stochas-

tic factor Λ(N) we find

var[Λ] = var[∆N/N ] = σ2
d/N.

As an example let the wi be Poisson distributed with means Ew = λ. Since

the variance of the Poisson distribution is the same as the mean, that is

σ2
d = Ew = λ, we also have var(∆N |N) = NEw = Nλ. Notice in particular

that for a population fluctuating around some stable equilibrium σ2
d must be

close to 1 since the mean contribution from the individuals (λ) are then close

to 1. We emphasize that this statement is not valid in general and must be

considered a property of the Poisson model. However, the Poisson model

gives us some idea of the order of magnitude we should expect to find for the

demographic variance of real populations.

Notice also that for small fluctuations we have the approximation (see section

1.4 and exercise 5)

var(∆ lnN) = var(∆X) = var(ln Λ) ≈ λ−2σ2
d/N = λ−2σ2

de
−X .

When working on the log scale one commonly includes the factor λ−2 in

the definition of the demographic variance. In chapter 4 we shall analyze

age-structured models and study the dynamics on the log scale. To obtain

variance formulas that are consistent with most formulas appearing in the

literature we shall then include the factor λ−2. However, when dealing with

decomposition of stochasticity in simple models as well as age-structured
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models it is mathematically simpler to operate on the absolute scale and not

including this factor, which is what we do in the present chapter.

1.7 Demographic and environmental stochas-

ticity acting together

If there are fluctuations in the stochastic vector z between years the individ-

ual contributions a given year are no longer independent. We then decompose

the contributions into variance components writing

wi = Ew + e+ di

where e = E(w|z) − Ew and di = wi − E(w|z). Then e, d1, d2, ..., dx are

stochastic variables with zero means and cov(e, di) = 0 (exercise 7).

Fig.1.4 shows distributions of individual fitness w to the next generation of

two bird species. We see that there is a considerable variance within each

year, corresponding to a between individual variation in di. However, the

histograms are also very different between years. In 1988 the Song Spar-

row has very small contributions compared to the best year which is 1990.

Mathematically this means that the component e is small in 1988 and large

in 1990. It seems to be a smaller between years variation in e for the Great

Tits.

The di are the demographic components varying between the individuals

of the population a given year, whereas e is an environmental effect which

is common for all individuals a given year, but vary stochastically between

years. Consequently, applying the general formula for the variance of a sum

of correlated variables, we obtain (exercise 9)

var(∆N |N) = var(
N∑
i=1

wi|N) = N(σ2
d − τ) +N2(σ2

e + τ),

where σ2
d = var(di), σ

2
e = var(e) and τ = cov(di, dj), i 6= j. The parameter

σ2
e is now a generalization of the previously defined concept of environmental
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Figure 1.4: Annual variation in the distribution of contributions w to the next

generation for two passerine species, the Song Sparrow Melospiza melodia on

Mandarte island and the Great Tit in Wytham Wood. The dashed line

indicates the mean values across all years and the dotted line the mean

contribution a single year.
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variance while τ is called the demographic covariance. For the multiplicative

factor Λ dealt with in the previous section we then have accordingly

var[Λ|N ] = (σ2
e + τ) + (σ2

d − τ)/N.

Assuming small fluctuations we also have the relation

var(∆X|N) ≈ λ−2(σ2
e + τ) + λ−2(σ2

d − τ)/N.

Hence, we see that the demographic variance can be ignored when the pop-

ulation is large.

Notice that the environmental component e expresses how much the mean

contributions a given year deviate from the mean contributions over all years.

The demographic effects di express how each particular individual’s contri-

bution deviates from the mean contribution the same year. An alternative

way of expressing the parameters defining the stochasticity is (exercise 10)

σ2
d = E[var(wi|z)]

σ2
e = var[E(wi|z)]

τ = E[cov(wi, wj|z)].

The demographic covariance τ is created by interactions between the indi-

viduals, such as intra-specific competition. It is defined as the covariance

between any two of the demographic contributions di. Although these co-

variances are likely to be different from zero, they are not usually taken into

account in population models. This may, however, be seen as a redefinition

of demographic and environmental variances as σ2
d−τ and σ2

e+τ respectively.

This latter definition, for which the demographic and environmental variance

are the coefficients of N and N2 in the expression for var(∆N), is equiva-

lent to defining the demographic variance as var(wi) − cov(wi, wj) and the

environmental variance as cov(wi, wj), where i 6= j (exercise 11). In general,

theoretical models as well as empirical findings show that the demographic

variance, the environmental variance and the demographic covariance may

all depend on N (in density-regulated populations).
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1.8 * Quantifications of the effects of stochas-

ticity

1.8.1 Reduction in growth due to stochasticity

We have seen that increasing stochasticity reduces the stochastic growth rate of a
population. In general it follows from Jensen’s inequality that E ln Λ < ln(E ln Λ)
since the logarithm is a convex function. In particular, if Λ is lognormally dis-
tributed this reduction is half the variance of ln Λ which is approximately half the
environmental variance.
We can explore this reduction in more detail by looking at the cumulant generating
function of the stochastic variable ln Λ which is defined as

K(v) = ln Eev ln Λ = k1v +
1

2!
k2v

2 +
1

3!
k3v

3 + . . . ,

where ki is the i’th cumulant of ln Λ. Observing that K(1) = ln EΛ = r and
k1 = E ln Λ = s we find, by inserting v = 1 in the definition, that the reduction in
the growth due to stochasticity in general is given by relation

s = r − (
1

2!
k2 +

1

3!
k3 + . . .)

If ln Λ is normally distributed, then kj = 0 for j ≥ 3, giving the reduction of
1
2k2 = 1

2σ
2, since k2 is the variance of the variable ln Λ. Using the first 4 cumulants

we find

s ≈ r − (
1

2
σ2 +

1

6
γ3σ

3 +
1

24
σ4γ4)

where γ3 = k3/k
3/2
2 and γ4 = k4/k

2
2 is the skewness and curtosis of ln Λ, respec-

tively.

1.8.2 Stochastic Alle-effect

As N gets smaller, the variance of ln Λ = ln[Eω + e+ d̄] = ln[λ+ e+ d̄] increases.
Defining generally the stochastic growth rate at population size N as s(N) =
E(ln Λ|N) = E(S|N) we find using the normal approximation for ∆ lnN (exercise
18)

s(N) ≈ r − 1

2
σ2
e −

1

2N
σ2
d.

In population biology, the term Alle-effect is used for different kinds of effects that
makes it difficult for populations at small densities to reproduce for example due
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Figure 1.5: The stochastic growth rate as function of the population size.
Parameter values are r = ln Ew = lnλ = 0.04, σ2 = 0.04, and σ2

d = 1, giving
N∗ ≈ 20. The dotted lines show the value of r and s(∞).

to the difficulty of finding a mate. Such effects may even lead to negative growth-
rates and eventual extinction when the population size passes below a certain
threshold (an unstable equilibrium point). One interesting effect of demographic
stochasticity is that this stochasticity alone may produce a kind of Allee-effect, a
stochastic Allee-effect, since we may have an unstable equilibrium point N∗ so that
s(N) < 0 for N < N∗ and s(N) > 0 for N > N∗. As an example, assume that
λ+ e is lognormally distributed with var[ln(λ+ e)] = σ2, but add the assumption
that d̄ is normal with variance σ2

d/N , which is approximately correct by the central
limit theorem.
Fig.1.5 shows numerical values of s(N) for this model, with r = ln Ew = 0.04,
σ2
e = 0.04, and σ2

d = 1, giving N∗ ≈ 20.
In Fig.1.6 we show 12 simulations of this process with N0 = 50, from which we
can actually get an impression of this stochastic Allee-effect with an unstable
equilibrium point at N∗ ≈ 20. We also see that the paths tend to be under the
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Figure 1.6: Simulations of the process described in Fig.1.5 with initial pop-
ulation size N0 = 50 giving lnN0 ≈ 4.
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corresponding deterministic process with growth rate r = 0.04, showing that the
reduction in the growth rate due to stochasticity is not just an artifact of the
model.

1.8.3 Temporal correlations in the environmental noise

We close this section by considering the effect of correlations between the ln Λt
expressed by the autocorrelation function

ρ(h) = ρ(−h) = corr(ln Λt, ln Λt+h),

ignoring demographic stochasticity and assuming that ln Λt is a stationary process
with

∑∞
i=1 iρ(i) <∞. Such correlations may be generated by time delayed effects

on survival and reproduction, by age structure, or by dependence between compo-
nents of the environmental vectors zt and zt+h. From the general formula for the
variance of a sum we find

var(lnNt|N0) = tσ2 + 2(t− 1)ρ(1)σ2 + 2(t− 1)ρ(2)σ2 + . . .+ 2ρ(t− 1)σ2,

which can be written as

var(lnNt|N0) = σ2t
t−1∑

i=−(t−1)

ρ(i)− 2σ2
t−1∑
i=1

iρ(i).

Hence, as t approaches infinity we have

var(lnNt|N0)

t
→ σ2

∞∑
−∞

ρ(i).

Notice that the autocorrelations neither affect r = ln EΛ nor s = E ln Λ, but it may
have a large effect on ENt ≈ exp[ts+ 1

2var(lnNt)] through the effect of increasing
var(lnNt). In order to analyze how the expected population size ENt changes with
t we may define the growth-rate for the expected population size as

u = lim
t→∞

1

t
ln(ENt/N0),

which expressed by the sequence Λt is

u = lim
t→∞

1

t
ln E(Λ1Λ2, . . .Λt).

If the Λt are independent and identically distributed we have E(Λ1Λ2 . . .Λt) =
(EΛ)t, giving u = r. In the case of a sequence with autocorrelations, however,
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u and r are different. In particular, if the ln Λt are multinormally distributed
variables we find (exercise 19)

s = r − 1

2
σ2 = u− 1

2
σ2
∞∑
−∞

ρ(i)

1.9 Fitness in a stochastic environment

1.9.1 The stochastic growth rate as a measure of fit-

ness

Although there are some different definitions of fitness, the concept of fit-

ness used in biology refers usually to deterministic models. In a stochastic

environment, the stochastic growth rate is the fitness measure that is most

informative in predicting the fate of different genotypes. For simplicity we

assume no density regulation and consider a haploid organism with two geno-

types that differ on one locus. Let Nt(A) and Nt(B) denote the number of

individuals of type A and B at time t and write Qt = Nt(A)/[Nt(A)+Nt(B)]

for the frequency of type A. For a given initial frequency Q0 we shall see

that the probability that Qt is larger than any proportion p approaches one

as t approaches infinity if the stochastic growth rate of the subpopulation of

type A individuals is greater than that for type B. This can be expressed by

the log of the population sizes,

P (Qt > p|Q0) = P [Nt(A)(1−p) > Nt(B)p] = P [Xt(A)−Xt(B) > ln(p)−ln(1−p)]

where Xt = lnNt for each genotype. If the populations are large enough

for demographic stochasticity to be ignored, the distribution of Xt(A) is

normal with mean X0(A) + s(A)t and variance σ2
s(A)t, where σ2

s(A) is the

environmental variance σ2
e(A) of type A if there are no autocorrelations in

the noise, and otherwise the more general expression given in 1.8.3. The

stochastic growth rate for A is denoted s(A). Using the same notation for

type B and assuming in the general case that there may be some correlation
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ρ between the noise terms of the two processes the same year, we find, writing

w = ln[p/(1− p)], that

P (Xt(A)−Xt(B) > w) = Φ{X0(A)−X0(B) + t[s(A)− s(B)]− w
√
t
√

(σ2
s(A) + σ2

s(B)− 2ρσs(A)σs(B))
},

where Φ(·) is the standard normal integral. Hence, this probability tends

to one for any value of w, and hence for any value of p in the interval be-

tween zero and one, as t approaches infinity, provided that s(A) > s(B).

If s(A) < s(B) it approaches zero. This demonstrates that the stochas-

tic growth rate is the most relevant measure of fitness for populations in a

stochastic fluctuating environment. Notice that the probability tends to one

if s(A) > s(B) even if we have the opposite relation r(A) < r(B) for the

corresponding deterministic growth rates defined by the values of ln EΛ for

the two genotypes.

1.9.2 * Bet-hedging

The fact that selection acts on s rather than r has many interesting evolutionary
effects. One of these is that so-called bet-hedging may be an optimal strategy,
which means that there is not necessarily one single strategy that is the best in
a stochastic environment, but rather a stochastic strategy. For example, a female
could choose to lay different numbers of eggs with different probabilities. Such a
stochastic strategy may work fairly well in good as well as bad years, and actually
be the best strategy in the long run, in particular better than any strategy of
laying a constant number of eggs. As an illustration of this concept we consider a
continuous range of strategies defined by a variable U which is normally distributed
with mean µ and variance σ2. The female chooses her strategy by choosing the
mean µ and the variance σ2. For a given constant environment Z the strategy
U has fitness λ(U,Z). Writing f(u) for the normal density of U , we see that the
population size is changed by a factor Λ(z) =

∫∞
−∞ λ(u, z)f(u)du from one year

to the next when the environmental variable is equal to z. Hence, if g(z) is the
density of the environmental variable Z, we have

s = E ln Λ =

∫
ln[

∫ ∞
−∞

λ(u, z)f(u)du]g(z)dz,
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where the integration with respect to z is taken over all possible values of Z. Let
the fitness function be of the Gaussian form

λ(u, z) = λ0(z) exp[− 1

2τ2
(u− z)2].

Then, for a constant environment Z, the optimal strategy would be to keep U
constant equal to Z, which is obtained by choosing µ = Z and σ2 = 0. Solving
the above integral in the case when U is a normal variate we find

s = E ln Λ = E lnλ0(Z) + ln τ − 1

2
ln(τ2 + σ2)− σ2

z + (µz − µ)2

2(τ2 + σ2)
,

where µz and σ2
z is the mean and variance of Z. This stochastic growth rate is

maximized for
µ = µz

and

σ2 =

{
σ2
z − τ2 for σ2

z > τ2

0 otherwise.

We see that bet-hedging, now interpreted as σ2 > 0, is an optimal strategy if the
stochasticity of the environment is large enough, more precisely, if σ2

z > τ2. If
σ2
z < τ2, then the constant strategy U = µz is optimal. The stochastic growth

rate obtained by this optimization is

s =

{
E lnλ0(Z)− 1

2 ln(σ2
z/τ

2)− 1
2 for σ2

z > τ2

E lnλ0(Z)− 1
2σ

2
z/τ

2 otherwise.

1.10 Exercises

1. For the stochastic model in Fig.1.2 find an expression for the probability that
the population size is larger than the expected population size as a function of
time. Calculate this probability for t=10, 50, 100, 200 and 500 years.
2. Ignoring the possibility of extinction apply the central limit theorem to show
that P (Nt < N0e

st) approaches 1/2 as t increases.
3. Derive an expression for the skewness E(V − EV )3/var(V )3/2 of the lognormal
distribution using the moment generating function for the normal distribution.
4. Plot the skewness of the population size against time for the model shown in
Fig.1.2
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5. Use Taylor expansion to show that s ≈ r− 1
2σ

2
e and σ2

e ≈ σ2
r/λ

2 in general when
σ2
e is small.

6. For the stochastic model in Fig.1.2 find an expression for the mean and standard
deviation of the population size as a function of time. Make a graph of the mean
plus minus one standard deviation as function of time.
7. Make the same graph as in exercise 6 on the log scale.
8. Consider the decomposition in 1.7 of the contributions wi = Ew+ e+ di, where
e = E(w|z)− Ew and di = wi − E(w|z). Show that e, d1, d2, ..., dx has zero means
and that cov(e, di) = 0.
9. Use the decomposition in 1.7 to show that var(∆N |N) = var(

∑N
i=1wi|N) =

N(σ2
d − τ) + N2(σ2

e + τ), where σ2
d = var(di), σ

2
e = var(e) and τ = cov(di, dj),

i 6= j.
10. Show that σ2

d = E[var(wi|z)], σ2
e = var[E(wi|z)] and τ = E[cov(wi, wj |z)].

11. Show that the coefficient σ2
d − τ of N in var(∆N |N) is var(wi)− cov(wi, wj) ,

and that the coefficient σ2
e + τ of N2 is cov(wi, wj) where i 6= j.

12. What is the demographic variance for a population where no individuals are
born and the adults die independently of each other with probability p?
13. What is the environmental and demographic variance in the population in
exercise 12 when p varies between years with mean µp and variance σ2

p?
14. A female contributes with a Poisson distributed number of offspring with
mean ν if she survives. If she dies none of her offspring survive to the next
generation. The females survive with probability p and there is no variation in
these parameters between generations. Show that the growth rate is λ = (ν + 1)p
that the demographic variance is σ2

d = νp+ (ν + 1)2p(1− p).
15. Consider the same model as in 14. Assume that the adult survival p is constant
while the parameter ν varies between years with mean value µ and variance σ2.
Show that σ2

e = p2σ2 and σ2
d = pµ+ (σ2 + µ2 + 2µ+ 1)p(1− p).

Hint: You may choose ν to be the environmental variable z in the text. Then use
the relations σ2

d = Evar(w|z) and σ2
e = varE(w|z).

16. Consider a population where the maximum obtainable value of Λ is θ and
assume that all positive values of Λ below θ are equally likely, that is, Λ is uniformly
distributed on [0, θ]. Find λ, r, σ2

e , σ
2
r and s expressed by θ. Why do the

approximations s ≈ r− 1
2σ

2
e and σ2

r ≈ σ2
e/λ

2 break down for this model? Assuming
an initial population size of 1000 individuals find the mean and median of the
population size after 100 years expressed by θ. What happens if θ = 2.2? Show
that if 2 < θ < e then the expected population size approach infinity while
P (Nt < a) approach 1 for any a > 0. Discuss this result.
17. Consider an individual producing B offspring a given year and let J be the
indicator variable for her survival, that is, J = 1 if she survives and otherwise
0. Her contribution to the next generation is then w = B + J . Discuss how the
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covariance between B and J affects the environmental and demographic variance.
18. Show that the stochastic growth rate of a population of size N with environ-
mental and demographic stochasticity is approximately r − 1

2σ
2
e − 1

2N σ
2
d provided

that ∆ lnN is approximately normally distributed.

19. Assume that the ln Λt are multinormally distributed with constant variance

and corr(Λt,Λt+h) = ρ(h) = ρ(−h). Show that s = r − 1
2σ

2 = u − 1
2σ

2∑∞
−∞ ρ(i)

where u is the growth rate of the expected population size as defined in 1.8.3.
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Chapter 2

Density-regulated populations

2.1 The concept of density-regulation

In chapter 1 we assumed that the vital rates determining the dynamics were

unaffected by the population size N . This is only realistic for species that

are not limited in growth by food or space. Most populations, however,

will grow to reach population densities that are so large that within species

competition for resources will affect the vital rates. Then, the contribution

from a single individual to the next generation must have a distribution that

depends on the population size N . In fisheries, for example, it is common to

divide the population into two parts, the spawning stock (NS) which is the

reproducing fragment of the population, and the recruitment (NR), which is

their production of new individuals which will enter the spawning stock when

they reach their age of maturity. The two most common models for density

regulation are the Beverton-Holt model and the Ricker model that expresses

the expected recruitment as functions of the spawning stock. The Beverton-

Holt model is given by NR = αNS/(1 + βNS) while the Ricker model is

NR = αNSe
−βNS , where α and β are constants that must be estimated from

data.

In the kind of models dealt with in chapter 1, density-regulation is most

appropriately introduced by assuming that the expected contributions to the

next generation, λ = Ew, depends on the population size, hence writing

37
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λ = λ(N). Correspondingly, the deterministic growth rate is then r(N) =

lnλ(N). If ∆N is small compared to N we then find

s(N) = E[∆ ln(N)|N ] ≈ E[
∆N

N
|N ] = λ(N)− 1.

Density regulation is commonly introduced by assuming that r(N) and λ(N)

are decreasing functions of the population size N . When analyzing stochas-

tic models, however, we will usually work with the stochastic growth rate.

The carrying capacity K of the population is then defined as the stable equi-

librium point given by s(K) = 0. For a deterministic model there is no

distinction between r and s giving r(K) = 0.

It is important to notice that a density-regulated population is defined as

a population for which the change in population size from one year to the

next depends on the population the previous year. In chapter 1 we dealt

with populations without density-regulation which we interpreted as the dis-

tribution of ∆ lnN being independent of N . As a further illustration of the

concept of density-regulation consider a population producing a large number

of eggs each season, out of which only a small fraction can survive to enter

the population as adults. If the environment is independent between year

the population sizes may also be independent. For example let us assume

that lnNt is a sequence of independent normally distributed variable with

mean µ and variance σ2. Then

s(N) = E(∆ lnN |N) = E[ln(N + ∆N)|N ]− ln(N) = µ− ln(N)

and σ2
e = var(∆ lnN |N) = σ2. It appears that this population is strongly

density-regulated with carrying capacity at K = eµ although this may seem

surprising since the populations sizes are independent between years.

2.2 Return time to equilibrium and strength

of density-regulation

An important parameter in deterministic models with density-regulation is

the characteristic return time to equilibrium TR, which is closely related to
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the strength of the density regulation at K. Defining the relative deviation

ε = (N −K)/K, the dynamic equation for small values of ε is given by the

first order approximation ∆ε = [λ(N) − 1]N/K ≈ λ(N) − 1 ≈ Kλ′(K)ε,

giving εt ≈ ε0 exp[Kλ′(K)t]. The time TR is defined as the time required

for the deviation to reach a fraction 1/e of its original value, giving TR ≈
−1/[Kλ′(K)] = −1/[Kr′(K)]. Hence, if the negative slope of λ(N) or r(N)

is large at N = K, the characteristic return time to equilibrium is small.

We shall later show that this concept of characteristic return time also has

an interesting interpretation in stochastic models for populations fluctuating

around a carrying capacity. For such models the autocorrelations between

population sizes at two different points of time drops to approximately 1/e

when the time difference is TR. A natural measure of the strength of density-

regulation is now γ = 1/TR = −Kλ′(K) = −Kr′(K) which is large if the

return time to equilibrium is small and visa versa.

Writing as before X = lnN we have

dλ

dN
=

dλ

dX

dX

dN
=

dλ

dX

1

N

so that Kλ′(K) alternatively can be written as dλ/dX evaluated at N = K.

Further, since d lnλ/dX = λ−1dλ/dX and λ(K) = 1 by the definition of

K, we see that the strength of density-regulation can be written in different

ways, actually as

γ = −Kλ′(K) = − dλ
dX

= −d lnλ

dX
= − d lnλ

d lnN
,

where all derivatives are evaluated at N = K.

In the deterministic analog of the previous model with independent lognor-

mally distributed population sizes subsequent years, we have E(N + ∆N) =

exp(µ+σ2/2) giving lnλ(N) = µ+σ2/2− lnN . Hence, the strength of den-

sity regulation γ as well as the return time to equilibrium TR is one in this

model. Notice that this result does not depend on the assumption that the

population sizes are lognormally distributed. For any distribution of popu-

lation sizes we have that lnλ = ln(EN)− lnN , where EN does not depend

on N , giving TR = γ = 1.
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2.3 The deterministic logistic model

For populations with small fluctuations around K the dynamics may be

described by a linear approximation to λ(N) around K writing

λ(N) ≈ λ(K) + λ′(K)(N −K) = λ(K) + γ(1−N/K)

giving

∆N/N = λ(N)− 1 ≈ γ(1−N/K).

This model, which is called the logistic model, or the logistic type of density

regulation, may often be realistic for all values of N . Notice then that as N

approaches zero ∆N/N approaches λ(0) − 1 so that the model also can be

written

∆N = [λ(0)− 1]N(1−N/K) ≈ r(0)N(1−N/K).

An alternative formulation which is almost equivalent to this is

∆(lnN) = r(0)(1−N/K)

or equivalently

r(N) = r(0)(1−N/K).

We see that the logistic model has the property that the strength of density

regulation is determined by the growth rate at small population sizes and

is not at all affected by the carrying capacity. More precisely, using the

definition γ = −Kλ′(K) we see that γ is the growth rate r at N = 0.

2.4 The log-linear model and Gompertz type

of density-regulation

If we rather than approximating λ(N) by a linear expression in N perform

the linearization in X = lnN we arrive at the model

λ(N) ≈ λ(K) +
dλ

dX
|N=K(X − lnK) = λ(K) + γ(lnK − lnN),
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giving

∆N ≈ γN lnK

(
1− lnN

lnK

)
.

In this form the model is often called the Gompertz type of density-regulation.

If we rather write the model in terms of X = lnN we get

∆X ≈ γk(1−X/k)

where k = lnK is the carrying capacity on the log scale. We see that this

is a linear model in X and is accordingly called a log-linear model. If we

add a stochastic term with zero mean and constant variance to the left of

the equation we obtain what in statistics is called a first order autoregressive

model.

2.5 The theta-logistic model

A general class of functions defining different types of density regulation is

the so-called theta-logistic class of models

r(N) = r0[1− (
N

K
)θ]

corresponding to the logistic model if θ = 1.

In order to make this model valid for any value of θ, including θ ≤ 0, the

parameter r0 must be chosen as a function of θ. One way of doing this is

to choose the growth rate at abundance N = 1, say r1, as a free parameter,

giving

r1 = r0(1−K−θ)

and

r(N) =
r1

1−K−θ
[1− (

N

K
)θ] = r1[1− N θ − 1

Kθ − 1
]

for θ 6= 0, whereas for θ = 0 we obtain the limit

r(N) = r1(1− lnN

lnK
).
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Figure 2.1: The deterministic growth rate r(N) as a function of N for differ-
ent values of θ in the thetalogistic model. The other parameters are r1 = 0.5
and K = 1000.
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Fig.2.1 shows the function r(N) for different values of θ .

For the characteristic return rate to equilibrium we find for this class of

models that TR = 1/(r0θ) = (1−K−θ)/(r1θ) for θ 6= 0 and TR = lnK/r1 for

θ = 0. Notice that the characteristic return time depends on r0 and θ only

through their product.

We see in Fig.2.1 that the theta-logistic model corresponds to very differ-

ent types of density-regulation for different values of θ. For a small θ the

regulation starts to act already at very small population sizes. If θ is large,

however, there is practically no density-regulation when the population size

is smaller than K, but the regulation gets strong when the population size

approaches K. We can summarize this by considering 4 special cases of the

model:

Type I: θ = −1. This leads to ∆ lnN ≈ ∆N/N = r1(1 − 1/N−1
1/K−1

) giving

∆N ≈ r1
K−N
K−1

. Hence, we see that this value of θ simply corresponds to a

linear model in N .

Type II: θ = 0. We have already seen that this case may be written as

∆(lnN) = r1(1− lnN/ lnK), so now the model is linear in lnN .

Type III: θ = 1. This give the logistic model ∆N ≈ r1N(1−N/K).

Type IV: θ =∞: In the limit as θ approaches infinity the model approaches

∆ lnN = r1 for any N < K, that is, there is no density-regulation below K.

Immediately above K ∆N approaches −∞. Hence, K plays the role of a

ceiling for the population size. Accordingly, this kind of model is often called

a ceiling model.

2.6 Stochasticity and density-regulation

Obtaining a deterministic analog to a stochastic model can be done simply

by just considering the expected values of ∆N or ∆ lnN , or even using some

other transformation of N . But choosing these different transformations

leads to different deterministic analogs of a stochastic model. From the

discussion of stochastic growth rate in chapter 1, however, we have seen
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that it is preferable to use the expected value on the log scale, that is, the

stochastic growth rate, since the growth on the log scale actually tends to a

constant as the time intervals get large in the case of no density-regulation.

Going in the opposite direction, from a deterministic to a stochastic model,

however, leaves us with lots of choices. A deterministic model may have sev-

eral parameters and may be parametrized in different ways. Each parameter

may be subject to temporal fluctuation, and additional stochastic terms with

zero mean or stochastic factors with mean 1 may also be included. The over-

all goal, however, is to formulate a model that is realistic for the population

we deal with.

The most common way of formulating a stochastic model is to assume that

the parameter expressing the population growth rate at small densities fluc-

tuates in time. But this assumption alone is not enough to uniquely de-

fine a model. Take for example the logistic model which we can write as

∆ lnN = r(1 − K/N) or as ∆ lnN = r − βN , where β = r/K. Although

these two deterministic models are equivalent, replacing r by a temporally

fluctuating parameter r(t) in the two models will give rather different mod-

els. Here, we shall chose the second formulation since it turns out to be

most realistic (exercise 1). More generally, we choose to write deterministic

models on the form

∆ lnN = r − 1

2
σ2
e −

1

2N
σ2
d − g(N),

where we already have taken into account the reduction in the stochastic

growth rate due to environmental and demographic stochasticity. Replacing

r by a variable r(t) fluctuating in time, we obtain the stochastic model

St = ∆ lnN = r(t)− 1

2
σ2
e −

1

2N
σ2
d − g(N).

Notice that in this formulation there is no stochasticity in the density reg-

ulating term. Hence, the variance in the change in the logarithm of the

population size during one time step conditioned on the population size the

previous year is var(St|N) = var[r(t)] ≈ var(∆N/N) = σ2
e + σ2

d/N .
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For the above discrete theta-logistic model this approach leads to

St = r1(t)− 1

2
σ2
e −

1

2N
σ2
d − r̄1

N θ − 1

Kθ − 1

where r̄1 is the mean of r1(t). In this formulation g(N) = −r̄(N θ−1)/(Kθ−
1).

As θ approaches zero we obtain the type II model in 2.2, which is linear

in lnN . If σ2
d = 0 and ∆ lnN is normally distributed this is a first order

autoregressive time series for which the mean of future values, the autocorre-

lation function and the stationary distribution is well known. These results

can then be used to find corresponding results for the population size N

(exercise 8 and 9).

As mentioned above, there are many different stochastic generalizations of a

deterministic model. For example, in the theta-logistic model we may let all

three parameters be stochastic processes r1(t), K(t) and θ(t). Examples of

more general models will be given in section 2.7 and in chapter 3.

Until now we have assumed that r (and λ), for any value of N, are stochastic

variables with distributions depending on N . In the next section we show

some examples of modelling the stochastic change in the population size from

first principles, considering the stochastic contribution of each individual to

the next generation. One advantage of doing this is that it may give some

insight into how var(∆N |N) is expected to depend on N , a relationship that

may be crucial when it comes to analyzing population fluctuations over long

time intervals with the possibility of large as well as small population sizes.

Above we have assumed that σ2
e and σ2

d do not depend on the population

size.
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2.7 Density-dependence in the demographic

and environmental variances

2.7.1 The distribution of vital rates

We have defined a population to be density-regulated if the expected relative

change in the population size from one year to the next depends on the

population size. The population growth, however, is determined by the vital

rates, the reproduction and survival, of the individuals in the population.

Generally, if the population size has an effect on the expected value of ∆N/N

or ∆ lnN , it will also affect the variances included in the model so that

the demographic and environmental variance both are functions of N , say

σ2
e(N) and σ2

d(N). For example, if J is the indicator of survival for an

individual in the environment z with expected value p(z), then EJ = Ep(z)

and var(J) = var[p(z)] + Ep(z)[1 − p(z)] = Ep(z) − Ep(z)2, indicating a

relationship between the mean and variance of J . Below we illustrate this

possible relationship through some theoretical examples of fluctuating and

density-regulated vital rates.

2.7.2 A logistic model with Poisson distributed contri-
butions

Assume that, for a given environment z, the contributions are independent

Poisson variates with means λ(z, N). Then the expected population size the

next year conditioned on the environment is Nλ(z, N), giving E(∆N |z, N) =

N [λ(z, N)−1], and the unconditional expectation E(∆N |N) = N [Eλ(z, N)−
1], where the expectation of λ(z, N) is taken with respect to the environmen-

tal variable z . We then obtain the logistic model with carrying capacity

K if we choose Eλ(z, N) = 1 + γ(1 − N/K), where γ = r expresses the

strength of the density regulation. The environmental variance in this model

is now σ2
e = var[E(wi|z, N)] = var[λ(z, N)]. As a further demonstration of

this concept let us choose two different models, one where the stochasticity
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in λ(z, N) is defined as a multiplicative effect, and one where it is additive.

The multiplicative model takes the form

λ(z, N) = A(z)(1 + γ(1−N/K)),

where the mean of A(z) over years is 1. Writing σ2 = var[A(z)], we then find

σ2
e(N) = σ2[1 + γ(1−N/K)]2

which decreases with N . On the other hand, choosing an additive model of

the type

λ(z, N) = 1 + γ(1−N/K) + ε(z)

where Eε(z) = 0, we find that the environmental variance is equal to var[ε(z)]

and hence independent of N if this variance is constant.

Using the fact that the variance of the Poisson is the same as the mean we

find for both models

σ2
d = E[var(wi|z, N)] = 1 + γ(1−N/K).

Notice that this is a decreasing function which is approximately 1 when the

population size is close to the carrying capacity.

Fig.2.2 shows simulations of the multiplicative process for K = 1000, γ =

r = 0.1 and σ2 = 0.01, 0.04.

2.7.3 * Environmental fluctuations in r and K

Consider now the discrete logistic model on the form

Nt+1 = Nt exp[r(1−Nt/K)],

where r is the specific growth rate for small population sizes and K is the caring
capacity. Environmental fluctuations may be introduced by assuming that r as
well as K depend on the environment, giving the model

∆N = N exp[r(z)(1−N/K(z))] +
N∑
i=1

di
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Figure 2.2: Simulations of the multiplicative process with σ2 = 0.01 (solid
line) and 0.04 (dotted line). The other parameters are K = 1000 and γ =
r = 0.1, corresponding to a return time to equilibrium TR = 1/γ = 10.
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where the di are the demographic components which are independent with variance
σ2
d. It follows from this assumption that

E(wi|N, z) = E[(∆N +N)/N |N, z] = exp[r(z)(1−N/K(z))]

implying that
σ2
e(N) = var{exp[r(z)(1−N/K(z))]|N}

which can then be evaluated if the bivariate distribution of r(z) and K(z) is known.
As a simple illustration assume r(z)/K(z) to be a constant, say β, not depending
on the environment, and let r(z) be normally distributed with mean r̄ and variance
σ2
r . Then,

σ2
e = exp[−2βN ]var{exp[r(z)]}

giving
σ2
e = exp[2(r̄ − βN)] exp(σ2

r )[exp(σ2
r )− 1],

which for small σ2
r and N ≈ K is actually equal to σ2

r to the first order.

2.7.4 * A model with density-regulated fecundity

Consider a population where the adults survive with a constant probability p, and
produces exactly one offspring that survives with probability q exp(−αN), where
α is a positive parameter. The only parameter depending on the environment is
q = q(z), which is the juvenile survival at small densities (N = 0). The strength
of density regulation is determined by α. Actually, since E(w) = p+ q̄ exp(−αN),
where q̄ = E[q(z)], and the carrying capacity is the value of N giving E(w) = 1,
we find

α = K−1 ln(
q̄

1− p
).

Since N + E∆N = NEwi, we find

E(∆N |N) = N{p+ q̄ 1−N/K(1− p)N/K − 1},

or equivalently
λ(N) = {p+ q̄ 1−N/K(1− p)N/K}.

Let us write σ2
q = var[q(z)], for the variance of q between years. If we assume that

survival and fecundity are independent, and independent between individuals for
a given z, then the demographic covariance τ is zero. The conditional mean and
variance of the contributions are

E(wi|z) = p+ q(z)(
1− p
q̄

)N/K
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Figure 2.3: The demographic variance σ2
d (upper panel) and σ2

e (lower panel)
as functions of N for the model given in 2.7.4 with parameters K = 1000,
p = 0.8, q̄ = 0.4 and σ2

q = 0.02.

var(wi|z) = p(1− p) + q(z)(
1− p
q̄

)N/K [1− q(z)(
1− p
q̄

)N/K ]

from which we find

σ2
d(N) = E[var(wi|z)] = p(1− p) + q̄(

1− p
q̄

)N/K − (σ2
q + q̄2)(

1− p
q̄

)2N/K

σ2
e(N) = var[E(wi|z)] = σ2

q (
1− p
q̄

)2N/K

Notice that the demographic as well as the environmental variance in this model
are functions of the population size N . An example for a given set of parameters
is given in Fig.2.3.
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2.7.5 * An example of demographic covariance

In the previous examples there was no covariance between the individual contribu-
tions for given environmental conditions, in which case the demographic covariance
is zero. The following is a theoretical example of a model with demographic co-
variances that may serve as a further demonstration of the concepts defining the
stochasticity.
Suppose that each individual of a population independently produce a Poisson
distributed number of eggs with mean much larger than one. Suppose that the
offspring selected to constitute the next generation are chosen at random from
the total amount of eggs. The environmental variable z is assumed to have an
effect on the population only through its effect on the population size each year.
We assume further that this relationship is deterministic, that is, N = N(z). The
fluctuations in N between years are then fully determined by the fluctuations in the
environmental vector z. If the sequence of environmental vectors are independent,
then the population size the next year is independent of the population size the
year before, provided that the population is always large enough to produce the
number of eggs required for a population of a size determined by the environmental
conditions.
Let us consider one year with population size N producing the next years pop-
ulation N + ∆N =

∑N
i=1 ci determined uniquely by some z. Conditional on

N + ∆N , the contributions are then multinomially distributed with parameters
(N+∆N, 1/N, 1/N, . . . , 1/N). Writing shortly EN = µ and var(N) = σ2 we find
E(wi|z) = (N + ∆N)/N , var(wi|z) = (N + ∆N)(1− 1/N)/N and cov(wi, wj |z) =
−(N + ∆N)/N2. Hence σ2

d = µ(1 − 1/N)/N , σ2
e = σ2/N2 and τ = −µ/N2.

Notice that, if the fluctuations in the population size are small, then N ≈ µ, giving
σ2
d ≈ 1−1/µ , σ2

e ≈ σ2/µ2 and τ ≈ −1/µ. Generally, however, all three parameters
may depend strongly on N .
The coefficients of N and N2 in the expression for var(∆N |N) are σ2

d − τ = µ/N
and σ2

e + τ = (σ2 − µ)/N2 giving var(∆N |N) = σ2 in accordance with the
assumptions. Notice that the coefficient of N2, σ2

e + τ = (σ2 − µ)/N2, is negative
if σ2 < µ and otherwise positive, and that both coefficients decreases with N .

2.8 Estimation of demographic and environ-

mental components.

For most populations one will only have a sequence of estimates of the pop-

ulation size each year, say N̂1, N̂2, . . . , N̂k. Often, the uncertainty in the
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estimates are quite large, which has the consequence that the fluctuations

due to demographic and environmental variances may simply disappear in

the fluctuations in the estimates due to the uncertainty in the estimation pro-

cedure. In such cases one will have to use more advanced statistical methods

constructed for taking into account sampling errors, for example using the

bayesian approach analyzed by Markov chain Monte Carlo Methods.

In this section we consider only the case of a full census being carried out each

year so that the observations are actually N1, N2, . . . , Nk. Even if such data

are available, there may be quite unrealistic to believe that the demographic

and environmental component may be separated from time series of realis-

tic length. We therefore suggest first trying to estimate the demographic

component from general biological insight and facts known for the species.

In particular, if data on individual survival and fecundity are available, es-

timation of the demographic component may be done each year. Such an

approach have the advantage that it also will give some information on how

the demographic stochasticity depends on the population size.

For practical applications, such as a population viability analysis, we will only

be interested in the coefficients of N and N2 in the expression for var(∆N |N),

that is, σ2
d−τ and σ2

e +τ . Using the decomposition wi = Ew+e+di given in

chapter 1, we see that var(wi) = σ2
e + σ2

d and cov(wi, wj) = σ2
e + τ . Writing

V for the unconditional (not conditioned on z) variance of the contributions

wi and C for the unconditional covariance of any two contributions within a

year, we then have simply (exercise 12)

var(∆N |N) = (V − C)N + CN2,

which we write as

var(∆N |N) = θ1(N)N + θ2(N)N2.

Suppose a random sample of individual fitness a given year, say w1, w2, . . . , wn

have been recorded. Then (exercise 13)

E{ 1

n− 1

∑
(wi − w̄)2} = θ1(N)
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where w̄ is the mean of the observed contributions. Hence, the standard

sum of square estimate 1/(n − 1)
∑

(wi − w̄)2 computed from a sample of

contributions within a year, is an unbiased estimator for the coefficient of N

for the N -value that year. If such estimators are available for a sequence of

years, the estimates may be plotted against N to reveal how the coefficient

depends on N , as illustrated in Fig.2.4 (upper panel). Notice that this result

is quite different from the corresponding result for independent variables

used to estimate variances. Although the sum of squares are identical, our

observations are stochastically dependent and the aim is not to estimate V ,

but actually θ1 = V − C.

The environmental variance may be estimated from the fluctuations of the

population size, provided that the demographic component is known and can

be subtracted. Suppose we have a parametric model for E(∆N
N
|N) = h(α,N),

where α is some vector of unknown parameters . We can estimate α by

maximum likelihood or by minimizing
∑

[∆Nt/Nt − h(α,Nt)]
2, with respect

to α. Since var(∆N/N) = E[∆N/N −h(α,N)2] = θ1(N)/N +θ2(N), we find

that

θ2(N) = E{[∆N/N − h(α,N)]2 − θ1(N)/N}.

Hence, if we replace α by the estimate α̂ we obtain an approximately unbiased

estimate

θ̂2(Nt) = [∆Nt/Nt − h(α̂, Nt)]
2 − θ̂1(Nt)/Nt

which may be plotted against Nt to check whether θ2(N) is constant or

changes with N (Fig.2.4, lower panel).

Fig. 2.4 shows annual estimates of σ2
d and σ2

e for a Great Tit population at

Oxford. Notice that each yearly estimate is rather uncertain. However, fitting

some parametric function by regression leads to much smaller uncertainties.

When individual data are available as in this case, one will often have a

rather large number of individual counts of reproduction and survival each

year. Hence, the demographic variance can be estimated with rather high

precision. The length of time series, however, is usually not very large. A 20

years time series is in biology considered to rather long. But this corresponds
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Figure 2.4: Annual estimates of the demographic and environmental variance
as functions of population size N for the Great Tit in Wytham Wood at
Oxford, England.



2.9. EXERCISES 55

only to 20 different values of the environment, so one will always end up with

a rather uncertain estimate of σ2
e . If there are sampling errors, the problem

of estimating the environmental variance is even bigger.

2.9 Exercises

1. The deterministic logistic model may be written in the form ∆N = rN(1 −
N/K). If r fluctuates in time a stochastic model my be formulated as ∆N =
r(t)N(1−N/K). Look at the properties of this stochastic model. Is it a realistic
model?
2. A discrete deterministic model can be approximated by replacing E(∆ lnN) by
the derivative d lnN/dt since the time step is one. Solve this differential equation
for the logistic model assuming that the population size is large enough to ignore
the demographic variance to find the expected value of log population size as a
function of time starting at N(0) = n0.
3. Solve the problem in exercise 2 for the theta-logistic model.
4. Verify the results for the four special cases of the theta-logistic model given in
the text, that is, for θ = −1, 0, 1 and ∞.
5. As θ → 0 the theta-logistic model approaches a linear model in lnN . If the
population is large enough for the demographic variance to be ignored this is what
is called a first order autoregressive model in time series analysis. Ignoring the
possibility of extinction and assuming that ∆ lnN is normally distributed, find
the stationary distribution of N expressed by r1, K and σ2

e .
Hint: remember that the stochastic growth rate at N = 1 is r1 − 1

2σ
2
e .

6. Consider the model in exercise 5. Suppose that extinctions still can be ig-
nored but not the demographic variance. How does the results differ from those
in exercise 5 if the fluctuations around the carrying capacity are so small that
the demographic stochastic term can be approximated by a term with constant
variance?
7. Consider models on the form E(∆ lnN) = r(t)− 1

2σ
2
e − 1

2N σ
2
d − g(N). Linearize

the expression for E(∆ lnN) in the neighborhood of N = K and use this to find an
approximation to the stationary variance when the demographic stochastic term
can be approximated by a term with constant variance.
8. The theta-logistic model with θ = 0, σ2

d = 0 and normally distributed ∆ lnN is a
first order autoregressive model. Use this to find E(lnNt+h|Nt), corr(lnNt, lnNt+h)
and the stationary distribution of lnN expressed by r1, K and σ2

e .
9. For the model in exercise 8 utilize well known properties of the lognormal
distribution to find E(Nt+h|Nt), corr(Nt, Nt+h) and the stationary distribution of
N expressed by r1, K and σ2

e .
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10. Let B denote the number of offspring of an individual and let J be the indicator
variable for its survival. For a given population size N we write E(B|z) = zν(N),
where ν(N) is a decreasing function expressing density regulation and z is an
environmental variable with Ez = 1 and var(z) = vz expressing the environments
effect on the fecundity. For a given environment z we further assume that EJ = p
(not affected by the environment), the coefficient of variation of B is cb, and
the correlation between B and J is ρ, so that the only parameter depending on
the environment is the expected fecundity. Find expressions for λ, σ2

e and σ2
d as

functions of N for this model. Write a computer program to calculate these three
functions. Plug in some reasonable values for the parameters and the function
ν(N) and make a graph showing how λ, σ2

e and σ2
d depends on N in this model.

11. Write a computer program simulating the theta-logistic model choosing ∆ lnN
to be normally distributed. Put σ2

d = 0, σ2
e = 0.01, K = 1000, θ = 0.5 and

r̄1 = 0.1 and find the variance of the stationary distribution of lnN by simulations.
Compare this to what you find using the linearization around K (exercise 7).
12. Writing V = var(wi) and C = cov(wi, wj) for i 6= j, show that var(∆N |N) =
θ1N + θ2N

2 = (V − C)N + CN2.
13. Suppose a random sample of individual fitness a given year, say w1, w2, . . . , wn
have been recorded. Show that

E{ 1

n− 1

∑
(wi − w̄)2} = θ1(N)

where w̄ is the mean of the observed contributions.



Chapter 3

Diffusion theory

3.1 Introduction

In models without density-regulation and age-structure we have seen that the

population process on the log-scale can be approximated by a random walk

when the population size is large enough to ignore demographic stochasticity.

In this case future population sizes is a sum of independent identically dis-

tributed random variables, and it follows from the central limit theorem that

the log population size after some years will be approximately normally dis-

tributed. It is well known that this is often a remarkably accurate approxima-

tion remembering that we only use the mean and variance of the increments

and not any other properties of their distribution. For density-regulated pop-

ulations we still add together the increments in log value between years, but

now these will have distribution depending on the (log) population size the

previous year. Hence, the central limit theorem is no longer applicable and

we cannot expect the log population sizes to be normally distributed, nor

can we expect to find a simple way of calculating the mean and variance.

However, there is still possible to approximate the process by a process that

is continuous in space and time and only uses the expectation and variance,

conditioned on the size the previous year, of the between years change in

population size like we do in applications of the central limit theorem. These

continuous processes are called diffusion processes and a number of results for

57
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these processes do play the same important role as the central limit theorem

in the sense that they are based only on means and variances and often give

remarkably accurate approximations to the real process.

Another class of processes often use in population dynamics are time series

models. These are models that can be used to analyze stationary processes.

One advantage of the time series approach is that the theory also include

incorporation of so called time-lags, that is, the change in population size

do not only depend on the size last year, but also on the values for one or

more previous year. Ecological processes for a single species may often be

of this type, for examples due to interactions with other species, temporal

autocorrelations in the environmental noise, or age-structure.

Time series analysis, however, do not provide any theory for first passage

times, that is, for calculating properties of the time it takes for the popula-

tion size to reach a certain value. The most important problem of this type

in population dynamics is the analysis of extinction processes. Diffusion

theory provides a number of results relating to this, for example methods

for calculating the distribution of the first passage time in some relatively

simple cases, and more generally methods for calculating its expectation.

Such methods are particularly useful when it comes to performing popula-

tion viability analysis and judging to which extent species are threatened or

vulnerable. It turns out that also processes with time lags and autocorre-

lated noise in many cases can be approximated with diffusions. In chapter

4, for example, we shall deal with the accurate diffusion approximation to

age-structured populations where there are strong time lag effect generated

by fluctuations in the age-structure.

3.2 The mean and variance function for dis-

crete processes

Let us consider the stochastic geometric growth model Nt+1 = ΛtNt, or

equivalently the random walk Xt+1 = Xt + St, where the Λt and St = ln Λt
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are independent with the same distribution. With initial population size

N0 = exp(X0) at time 0 we find simply

Xt = X0 + S0 + S1 + . . .+ St−1.

Hence, by the central limit theorem the distribution of Xt for a given X0 is

approximately normal with mean X0+µt and variance νt, where µ = ESt and

ν = var(St). It is well known that this approximation is remarkably good,

even for moderate values of t, which means that the form of the distribution

of the St has practically no effect on the process Xt, only the expectation µ

and the variance ν. We obtain a more general class of models of the type

Xt+1 = Xt + St, by allowing the distribution of St to depend on Xt. For

this process let us write µ(x) = E(St|Xt = x) and ν(x) = var(St|Xt = x).

In accordance with our remarks on the simple model with constant µ and

ν, where the properties of the process is practically determined by these two

parameters, we should expect that the functions µ(x) and ν(x) contains most

of the information of the behavior of the general process. As an illustration

we consider three processes with the same mean and variance functions, but

with rather different distributions of the St for given values of Xt. Let the

models be of the discrete logistic type E(lnNt+1|Nt = n) = lnNt+r(1−n/K)

or equivalently E(∆Xt|Nt = n) = E(∆Xt|Xt = lnn) = r(1− n/K) giving

µ(x) = r(1− ex/K)

where x = lnn. We have seen in section 2.4 that for populations with small

fluctuations around a carrying capacity which is not too small, the variance of

∆Xt conditioned on Xt is approximately equal to the environmental variance.

In accordance with this we assume

ν(x) = σ2
e .

The model may now be written as

∆X = µ(x) +
√
ν(x)U
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Figure 3.1: Population fluctuations for three models with the same discrete
logistic type of dynamics with parameters r = 0.2, K = 1000, σ2

e = 0.01. The
increments are modelled by different distributions: Normal distribution (a),
Rectangular distribution (b), Exponential distribution (c) and the diffusion
approximation recorded at discrete values with increments 1 (d).
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where U is standardized so that EU = 0 and var(U) = 1.

Fig.3.1a-c shows simulations of this process when U is standardized normal,

rectangular and exponential, respectively. Even if there is only one simulated

process for each distribution we do get the impression that the fluctuations

look fairly similar, especially for the normal and the rectangular, which both

has zero skewness. For the exponential, which is skewed to the right, there

is some tendency that the increases are somewhat quicker and the decreases

somewhat slower than for the other distributions.

In the next section, we define diffusion processes, which is a class of processes

that are continuous in the state variable as well as in time. The properties

of such processes will be completely defined by the functions µ(x) and ν(x)

which are called the infinitesimal mean and infinitesimal variance of the pro-

cess. Together with possible boundary conditions, these functions completely

define the diffusion process. It turns out that discrete processes often can be

accurately approximated by diffusions with infinitesimal mean and variance

equal to the mean and variance function of the discrete process.

3.3 The infinitesimal mean and variance of a

diffusion

When the mean and variance functions are constants we have seen that the

expectation as well as the variance of Xt−X0 for a given X0 are proportional

to t, more precisely E(Xt−X0|X0) = µt and var(Xt−X0|X0) = νt. The basic

assumption of diffusions, apart from the Markov property the future depends

only on the previous state), is that these relations hold for very small values of

t, that is, for a small time interval ∆t we assume E(∆Xt|Xt = x) ≈ µ(x)∆t

and var(∆Xt|Xt = x) ≈ ν(x)∆t. As ∆t actually approaches zero we see

that the last relation is equivalent to E[(∆Xt)
2|Xt = x] ≈ ν(x)∆t because

[E(Xt|Xt = x)]2 is of order (∆t) and vanish compared to terms of order ∆t as

∆t approaches zero. The precise mathematical definitions are that the limit

of E(∆Xt|Xt = x)/∆t as ∆t approaches zero is the infinitesimal mean µ(x),
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while the limit of E[(∆Xt)
2|Xt = x]/∆t is the infinitesimal variance ν(x).

Together with some boundary conditions, for example an extinction barrier,

these two functions µ(x) and ν(x) completely define the diffusion process.

Diffusion processes may be simulated by using small discrete time steps. For

population processes time steps ∆t = 0.1 seasons usually gives sufficient

accuracy. If the state at time t is Xt = x we simulate

Xt+∆t = x+ µ(x)∆t+ Ut
√
ν(x)∆t,

where the Ut are independent standard normal variates. By this method we

obtain E(∆Xt|Xt = x) = µ(x)∆t and var(∆Xt|Xt = x) = ν(x)∆t.

As an illustration Fig.3.1d shows one simulation of this process, that is

µ(x) = r(1− ex/K) and ν(x) = σ2
e , serving as an approximation to all three

processes shown in Fig.3.1a-c. The diffusion approximation constructed in

this way, by choosing the mean and variance functions of the discrete process

as the infinitesimal mean and variance, is commonly referred to as the Ito

approximation. More precisely, the method is based on first expressing the

process by a stochastic differential equation and using the stochastic inte-

gral called Ito integration when solving the equation, which is equivalent to

dealing with the above diffusion.

Suppose now that we rather than working with Xt = logNt considered the

diffusion approximation to Nt. This diffusion approximation would then

have infinitesimal mean µN(n) = E(∆N |N = n) and variance νN(n) =

var(∆N |N = n). It turns out that these two diffusions are not quite identical,

but in practice fairly close if the changes in population size between years are

not too large. In order to deal with processes on different scales, for example

the log-scale and exponential scale, we need to know in some detail what

happens when we change the scale of a diffusion. This is dealt with in some

detail in section 3.5.
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3.4 Boundary conditions

A diffusion is fully defined by its infinitesimal mean and variance together

with some boundary conditions. In biology, the most actual boundary con-

dition is defined by introducing an absorbing barrier at some value of N

where the population actually goes extinct. Usually this extinction barrier

is chosen at N = 1 or N = 0. When the population trajectory reaches

the extinction barrier the population remains in this state. Hence, extinc-

tion barriers should only be used when modelling closed populations with no

immigration from other populations.

Sometimes population models may also be defined by introducing a reflecting

barrier. This barrier can never be crossed. Rather than crossing, the process

is immediately reflected. Mathematically, a reflecting barrier at, say n =

a, can be modelled by defining the infinitesimal mean and variance to be

symmetric around n = a. More precisely, for n > a we use the infinitesimal

mean µ(n) = −µ(2a−n) and variance ν(n) = ν(2a−n) and treat the process

as having no barrier at n = a. If the state of this process is Nt > a, we simply

interpret this as if the state of the real process with reflecting barrier were

2a−Nt.

Returning to the theta-logistic model we observe that as θ approaches infinity,

the infinitesimal mean approaches r1n for n < K, and the density dependence

tends to be infinitely strong at, or immediately above K. Hence, in the limit

θ = ∞ this is a model for geometric growth with a reflecting barrier at

N = K, a model we shall use to analyze the scaling of the time to extinction

(see section 3.9). Fig.3.2 shows a simulation of this diffusion with a reflecting

barrier at population size 1000.

3.5 Transformations

If Nt is a diffusion process, then also Xt = g(Nt) is a diffusion for any

function g which is twice differentiable. The most common change of scale in

biology is the log transformation g(n) = lnn, but other transformations, for
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Figure 3.2: Simulation of the ceiling model with reflecting barrier at popu-
lation size 1000. The parameters are r1 = 0.02, σ2

e = 0.01.
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example transformations that stabilizes the infinitesimal variance, may also

be of interest (see section 3.6.3). Let µ(n) and ν(n) be the infinitesimal mean

and variance of the diffusion Nt. Then, the infinitesimal mean and variance

of Xt = g(Nt) are

µX(x) = g′(n)µ(n) +
1

2
g′′(n)ν(n)

νX(x) = g′(n)2ν(n)

where n = g−1(x), which is the inverse function or the solution of the equation

x = g(n) with respect to n.

For the log transformation we insert g(n) = lnn, g′(n) = 1/n and g′′(n) =

−1/n2 giving infinitesimal mean 1
n
µ(n)− 1

2n2ν(n) and variance 1
n2ν(n).

As a simple example of log transformation we consider the geometric Brow-

nian motion which is a process growing exponentially with constant specific

growth rate, that is, µ(n) = rn. The environmental variance σ2
e is constant,

and there is no demographic variance, corresponding to ν(n) = σ2
en

2. This is

the diffusion approximation for the discrete process Nt+1 = ΛtNt, where the

Λt are independent identically distributed. More precisely, r = EΛt − 1 and

σ2
e = varΛt. Inserting this infinitesimal mean and variance into the general

formula for the log transformation given above, we find that the diffusion

Xt = lnNt is given by

µX(x) = r − 1

2
σ2
e

νX(x) = σ2
e .

This process is an example of a Brownian motion, which is a diffusion

with constant infinitesimal mean and variance. In section 2.7 we defined

the stochastic growth-rate of a discrete process as E∆X = E ln Λ. Since

E∆X ≈ µX(x), we see that the infinitesimal mean of Xt is the natural defi-

nition of the stochastic growth rate of a diffusion. Notice that the stochastic

growth-rate of the geometric Brownian motion is not the growth rate r of

Nt, but actually s = r − 1
2
σ2
e . This reduction in the growth rate of 1

2
σ2
e

due to stochasticity, is the diffusion analogy to the reduction in the growth
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on log-scale that we found for models in discrete time (see section 1.4 and

Fig.1.2).

For the same geometric growth model with constant demographic as well as

environmental variance we have var(∆N |N) = σ2
dN+σ2

eN
2. The correspond-

ing diffusion process has infinitesimal variance ν(n) = σ2
dn+ σ2

en
2. Applying

the transformation formulas we find (exercise 1) that the infinitesimal mean

and variance for the process Xt = lnNt is r − 1
2
σ2
e − 1

2n
σ2
d and σ2

e + σ2
d/n, or

if expressed by x

µX(x) = r − 1

2
σ2
e −

1

2
σ2
de
−x

νX(x) = σ2
e + σ2

de
−x.

Hence, we find the same kind of reduction in the stochastic growth-rate due

to environmental and demographic stochasticity as we found for discrete pro-

cesses in 1.4. In this model the reduction due to environmental stochasticity

is σ2
e/2, while the reduction due to demographic stochasticity is σ2

d/(2n),

which increases as n decreases in accordance with Fig.1.2. The infinitesimal

variance increases as the populations size decreases provided that the demo-

graphic variance is positive. One important effect of this decrease in growth

rate and increase in stochasticity for small populations is that the probability

of extinction strongly increases with the demographic variance.

Notice that for populations with positive stochastic growth-rate for large

values of n, that is, s = r − 1
2
σ2
e > 0, we may still have negative stochastic

growth-rate for sufficiently small population sizes, actually an Allee effect,

due to the term 1
2n
σ2
d. The unstable equilibrium point at which the stochastic

growth-rate changes from positive to negative is (exercise 2)

n∗ =
σ2
d/2

r − σ2
e/2

=
σ2
d

2s
.

Further examples of transformations are given in section 3.6.
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3.6 * Some examples of transformations

3.6.1 Log-transformation of a model with Gompertz
type of density-regulation

The diffusion approximation for the theta-logistic model for θ = 0 when ignoring
demographic stochasticity is

µ(n) = r1n(1− lnn/ lnK)

ν(n) = σ2
en

2.

If the carrying capacity is large so that extinction is unlikely, it is legitimate to
ignore the demographic variance. The density-regulation for this model is of the
Gompertz type. Performing the log-transformation we find (exercise 3)

µX(x) = r1(1− lnn/ lnK)− σ2
e/2

νX(x) = σ2
e ,

where n = ex. The infinitesimal mean may be written on the form

µX(x) = α− βx

where α = r1 − σ2
e/2 and β = r1/ lnK. This model, which has constant in-

finitesimal variance and a linear expression with negative coefficient of x for the
infinitesimal mean, is called the Ornstein-Uhlenbeck process (OU-process). Some
important results for this process will be given in section 3.8.4 and 3.12.

3.6.2 Transformations of the theta-logistic model

Ignoring demographic stochasticity the theta-logistic model may be written on the
form

µ(n) = rn(1− nθ

Kθ
)

ν(n) = σ2
en

2

for θ 6= 0. We introduce the transformation Xt = g(Nt) = N θ
t . Using g′(n) =

θnθ−1, g′′(n) = θ(θ − 1)nθ−2, and applying the transformation formulas, we find
(exercise 4)

µX(x) = rθx[1 +
1

2
(θ − 1)σ2

e −
x

Kθ
]

νX(x) = θ2σ2
ex

2,
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which is a logistic model with constant environmental variance σ2
eθ

2, growth-rate
rθ[1 + 1

2(θ − 1)σ2
e ], and carrying capacity Kθ[1 + 1

2(θ − 1)σ2
e ].

Another interesting transformation of the theta-logistic model, still assuming θ 6=
0, is Yt = N−θt that leads to the diffusion (exercise 5)

µY (y) =
rθ

Kθ
− yθ[r − 1

2
(θ + 1)σ2

e ]

νY (y) = θ2σ2
ey

2.

We shall see later (section 3.10) that the simple linear form of the infinitesimal
mean is of particular interest since it leads to a very simple expression for the
autocorrelation function of the process.

3.6.3 Isotrophic scale transformation.

A more general expression for the stochastic Allee effect due to demographic
stochasticity was derived by Lande (1998). Rather than dealing with the stochas-
tic growth rate obtained by performing the log transformation, Lande considered
the transformation to a scale with isotropic noise, or a constant infinitesimal vari-
ance. From the transformation formula νX(x) = g′(n)2ν(n) we see that we obtain
νX(x) = 1 by choosing g′(n) = 1/

√
ν(n) giving

g(n) =

∫ n dz√
ν(z)

.

which inserted into the transformation formula for the infinitesimal mean gives

µX(x) = [µ(n)− 1

4
ν ′(n)]/

√
ν(n).

Hence, the growth-rate on this scale changes sign at Ñ given by

µ(Ñ) = ν ′(Ñ)/4.

Since we are here interested primarily in small population effects we consider a
population well below its carrying capacity so that µ(n) = rn. If the demographic
and environmental variances are constants we have ν(n) = σ2

dn + σ2
en

2 giving
ν ′(n) = σ2

d + 2nσ2
e . Inserting this in the equation for Ñ , we find

Ñ =
σ2
d/4

r − σ2
e/2

=
σ2
d

4s
,

where s = r − σ2
e/2 is the stochastic growth rate for large population sizes, which

is exactly half the value of the unstable equilibrium point based on the stochastic

growth-rate defined by the log-transformation for the same model.

For an explicit expression for the transformation X = g(N) see exercise 7.
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3.7 Populations modeled by Brownian mo-

tions and OU-process

A Brownian motion is a diffusion with constant infinitesimal mean and vari-

ance. A number of results, such as the probability of reaching barriers, the

distribution of future states, the distribution of the time to extinction, and

predictors for extinction, are available for this model, and will be dealt with

in section 3.8.2, 3.8.3, and 3.9.

We have previously seen that the diffusion approximation for the discrete

multiplicative population model with no density-regulation is

µ(n) = rn

ν(n) = σ2
en

2,

provided that the population size is large enough for the demographic stochas-

ticity to be ignored. Performing the log-transformation Xt = lnNt we have

seen that Xt is a diffusion with infinitesimal mean r− σ2
e/2 and variance σ2

e .

Since these are constants not depending on n the process Xt is a Brownian

motion and the results for these processes are available for analyzing the

process Xt.

Another class of diffusions already mentioned for which a number of interest-

ing results are available (see section 3.8.4 and 3.12) is the Ornstein-Uhlenbeck

process defined by a constant infinitesimal variance and a linear expression

for the infinitesimal mean. This type of process may serve as good approxi-

mations to a number of models for populations fluctuating around a carrying

capacity that is large enough for the possibility of extinctions to be ignored.

For models with constant environmental variance we have seen that the in-

finitesimal variance of lnXt may be approximately constant for large popula-

tion sizes, actually equal to σ2
e , and the infinitesimal mean is µ(n)/n− σ2

e/2.

If we now replace the infinitesimal mean by its linearization around x = lnK,

where K is defined by µ(K) = 0, we obtain an Ornstein-Uhlenbeck process
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that can be used as an approximation (exercise 8)

µX(x) ≈ µ′(K)(x− lnK)− σ2
e/2

νX(x) ≈ σ2
e .

As an example let us perform this approximation for the theta-logistic model

µ(n) = r1n[1− nθ − 1

Kθ − 1
]

giving

µ′(K) = − r1θ

1−K−θ
= −rθ

and the linear approximation

µX(x) ≈ (rθ lnK − σ2
e/2)− rθx.

We see that to this order of approximation the process depends on r and θ

only by the product rθ. As a consequence, we cannot expect to be able to

estimate r and θ separately from time series observations from such popula-

tions. Actually, some more detailed knowledge of the populations behavior

at small population sizes will often be required.

Notice that in the limit as θ approaches zero we find µ′(K) = r1/ lnK, giving

exactly the same process as we found in 3.6.1, which should be no surprise

since the process Xt for θ = 0 is exactly the Ornstein-Uhlenbeck process.

Fig.3.3 shows a simulation of the theta-logistic diffusion together with the

approximation by the Ornstein-Uhlenbeck process.

3.8 Computations in diffusion models

3.8.1 The Green function and related functions

Some important results for diffusions may be expressed by the Green function

G(x, x0) for the process. The physical interpretation of this function is the

following: Consider a diffusion Xt with infinitesimal mean and variance µ(x)
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Figure 3.3: Simulation of the theta-logistic model with r1 = 0.1, K = 500,

σ2
e = 0.005 and θ = 2 (upper panel) and the same process approximated by

an Ornstein-Uhlenbeck process (lower panel).
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and ν(x), an absorbing barrier at a and b, a < b, and initial state X0 = x0

between a and b. Then, the expected time the process spends in the interval

(x, x + ∆x) before it goes extinct is G(x, x0)∆x in the limit as ∆x tends to

zero. Hence, by the additive property of expectations, the expected time the

process spends in an interval (c, d) is
∫ d
c G(x, x0)dx.

The Green function may in general be expressed by the functions

s(x) = exp[−2
∫ x µ(z)

ν(z)
dz]

S(x) =
∫ x

s(z)dz,

where the lower limit of the integration may be chosen arbitrarily since the

Green function will not depend on them. In order of simplifying the notation

we also define the function

m(x) =
1

ν(x)s(x)

The general expression for the Green function is then

G(x, x0) =

 2 [S(x)−S(a)][S(b)−S(x0)]
S(b)−S(a)

m(x) for a ≤ x ≤ x0 ≤ b

2 [S(b)−S(x)][S(x0)−S(a)]
S(b)−S(a)

m(x) for a ≤ x0 ≤ x ≤ b.

For realistic biological models with density regulation µ(x) is negative for

large values of x so that S(b) approaches infinity as b increases towards

infinity. Choosing b = ∞ and the extinction barrier a as the lower limit of

integration we obtain the much simpler expression

G(x, x0) =

 2m(x)S(x) for a ≤ x ≤ x0

2m(x)S(x0) for a ≤ x0 ≤ x.

3.8.2 The probability of ultimate extinction

Starting at some x0 between a and b, the probability that the process reaches

b before a is

u(x0) =
S(x0)− S(a)

S(b)− S(a)
.
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Consider first density dependent models with exponential growth with pos-

itive growth-rate close to the extinction barrier a, positive environmental

variance, and no demographic variance. For such models the probability

u(x0) will tend to 1 as a approaches zero for any finite b (exercise 9). This

means that this process can never go extinct if a = 0. On the other hand,

if we either include a positive demographic variance, or choose a = 1 or

some other positive value, then u(x0) approaches zero as b tends to infinity

for density-regulated populations, which means that ultimate extinction is a

certain event (exercise 10).

For density independent models the situation is a different one. Generally, if

the stochastic growth-rate is negative, the ultimate extinction is certain. For

positive growth-rates the process may actually be absorbed at infinity, and

the probability of ultimate extinction can be found from the above expres-

sion for u(x0). For models with constant demographic and environmental

variances the solutions are fairly simple.

Consider the geometric Brownian motionNt with infinitesimal mean µN(n) =

rn and variance νN(n) = σ2
en

2. We have seen that Xt = lnNt then is a

Brownian motion with drift parameter µ(x) = s = r−σ2
e/2 and infinitesimal

variance ν(x) = σ2
e . We choose the extinction barrier for Nt at 1 which

corresponds to choosing a = 0 for the process Xt. For this model (exercise

12) it is straightforward to perform the integrations, using a = 0 as the lower

integration limit, giving

s(x) = e
− 2s

σ2e
x
,

which integrates to (exercise 12)

S(x) =

 σ2
e

2s
(1− e−

2s

σ2e
x
) for s 6= 0

x for s = 0,

Then, as the upper absorbing barrier tends to infinity we find

u(x0) =

 0 for s ≤ 0

1− e−
2s

σ2e
x0

for s > 0,



74 CHAPTER 3. DIFFUSION THEORY

which means that this process actually may be absorbed at infinity if s is

positive. Transforming back to the original geometric Brownian motion Nt

with initial state n0 we see that ultimate extinction at N = 1 happens with

probability 1 if s ≤ 0, and with probability n
− 2s

σ2e
0 if s > 0 .

For the more general diffusion model for exponential growth that also takes

demographic stochasticity into account (exercise 13) we use ν(n) = σ2
dn +

σ2
en

2, giving

s(n) = (
σ2
d + σ2

e

σ2
d + σ2

en
)

2r

σ2e ,

which is easily integrated to give

S(n) =


σ2
d+σ2

e

2s
[1− (

σ2
d+σ2

en

σ2
d
+σ2

e
)
− 2s

σ2e ] for s 6= 0
σ2
d+σ2

e

2s
ln(

σ2
d+σ2

en

σ2
d
+σ2

e
) for s = 0.

Inserting this in the general expression with b = ∞, we still find that the

probability of ultimate extinction is 1 if s ≤ 0, while for s > 0 we find

that ultimate extinction occur with probability (
σ2
d+σ2

e

σ2
d
+σ2

en0
)2s/σ2

e . For σ2
d = 0

this expression is equivalent to what we found for the geometric Brownian

motion, as expected. The effect of σ2
d on the probability of ultimate extinction

is illustrated in Fig.3.4.

If the initial population size is small, the environmental variance may some-

times be ignored. The probabilities of ultimate extinction may then be found

by considering the limits of the above expressions as σ2
e tends to zero, which

is 1 for s < 0 and otherwise e−2s(n0−1)/σ2
d (exercise 14).

3.8.3 The expected time to extinction and some re-

lated results

Since G(x, x0)∆x expresses the expected time the process Xt is in the interval

(x, x+ ∆x) before it is absorbed at a or b, the expected time to absorbtion is

found by adding the contributions from all intervals. As ∆x approaches zero
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Figure 3.4: The probability of ultimate extinction as function of the de-

mographic variance for different initial population sizes. The diffusion has

infinitesimal mean µ(n) = rn with r = 0.015 and constant environmental

and demographic variance, σ2
e = 0.01.
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we then obtain the exact expression for the expected time to extinction as

ET =
∫ b

a
G(x, x0)dx.

This integral can be solved analytically only for some very special models,

and must otherwise be solved numerically. For the Brownian motion with

drift s and variance σ2
e we find for a = 0 and b = ∞ that s(x) = exp(−αx)

and S(x) = [1− exp(−αx)]/α, where α = 2s/σ2
e . For s ≥ 0 we find that the

integral of the Green function diverge, corresponding to ET =∞. For s < 0

we find

G(x, x0) =


2
σ2
eα

(eαx − 1) for x ≤ x0

2
σ2
eα

(1− e−αx0)eαx for x > x0,

The integral from zero to infinity of this Green function is −2x0/(σ
2
eα) or

ET = −x0/s.

For biological populations with density regulation we plug in a = 1, b =∞ in

the simplified expression for the Green function given in section 3.8.1 giving

ET =
∫ n0

1
2m(n)S(n)dn+

∫ ∞
n0

2m(n)S(n0)dn,

which can be evaluated by numerical integrations. The analysis of the time

to extinction is dealt with in more detail in section 3.11.

The Green function may also be applied to find a more general result that

may be quite useful in some practical applications. Let h be any function

and consider the expectation

v(x0) = E[
∫ T

0
h(Xt)dt],

where x0 is the initial state at time t = 0, and T is the time at which the

process is absorbed. Then v(x0) may be calculated from the Green function

(exercise 15) giving

v(x0) =
∫ b

a
h(x)G(x, x0)dx.
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Notice that if h(x) = 1, then v(x0) = ET , so the result for ET given above

is a special case. We shall apply this result in chapter 5 when we deal with

the effects of harvesting. Consider a diffusion Nt and assume that at a small

time step (t, t+ ∆t) we harvest an amount h(Nt)∆t. Then the total harvest

before the population goes extinct is
∫ T
0 h(Nt)dt, and the expected value of

this harvest may be evaluated using the above result.

3.8.4 Predictions and stationary distributions

For a given diffusion Xt with known infinitesimal mean and variance µ(x)

and ν(x), suppose that X0 = x0 at time zero has been observed. Then the

population size Xt at some future point of time is a stochastic variable with

distribution, say ft(x;x0). For most models simple analytical expressions for

this distribution are not available. However, for the Brownian motion and

the Ornstein-Uhlenbeck process, the distribution is normal with known mean

and variance provided that the possibility of extinction is ignored. .

Using our previous notation for the logarithm of a geometric Brownian mo-

tion, we consider the Brownian motion with drift parameter s and infinites-

imal variance σ2
e . Then, if there are no absorbing barriers, the distribution

of Xt given X0 = x0 is normal with mean x0 + st and variance σ2
et. This

distribution is also known in the case of an extinction barrier. This will be

dealt with in section 3.11.3.

For the Ornstein-Uhlenbeck process with infinitesimal mean α − βx, β > 0,

infinitesimal variance ν(x) = σ2, and no extinction barrier, the distribution

of Xt is also normal with

E(Xt|X0 = x0) = α/β + (x0 − α/β)e−βt

var(Xt|X0 = x0) =
σ2

2β
(1− e−2βt).

We see that the expectation as well as the variance tend to a limit as t

approaches infinity. Hence, if t is sufficiently large, there is no informa-

tion left in the observation X0 = x0, and the process will go on fluctuating
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forever around the mean α/β with variance σ2/(2β). Such processes are

called stationary processes, and the distribution of the state for large values

of t, f(x) = f∞(x;x0), is called the stationary distribution of the process.

Accordingly, the Ornstein-Uhlenbeck process has a stationary distribution

which is normal with mean α/β and variance σ2/(2β). Notice that large val-

ues of β, corresponding to strong density regulation around K when applied

to population modeling, has two important effects. Firstly, a large β has

the effect that the stationary distribution is reached quickly, and secondly,

the variance of the stationary distribution will be small which means that

the fluctuations around the mean are small. For processes with fairly small

fluctuations around the carrying capacity we have seen that the Ornstein-

Uhlenbeck process may serve as an approximation. Hence, the corresponding

stationary distribution may be used to analyze how the different population

parameters affect the population fluctuations.

Though there exists no simple general expression for the distribution ft(x;x0),

the general expression for the stationary distribution of a stationary diffusion

is fairly simple, actually

f(x) = m(x)[C1S(x) + C2],

where C1 and C2 are constants that must be determined from the boundary

conditions, and m(x) and S(x) are defined as before. For the type of pop-

ulation process dealt with here, the integral of m(x)S(x) over all accessable

values of x will be infinite, which means that C1 must be zero since f(x)

should integrate to 1. Hence, the stationary distribution is simply propor-

tional to m(x), that is

f(x) = m(x)/
∫ ∞
a

m(z)dz,

where a is an the extinction barrier that can never be reached or some natural

lower bound for the process. If the integral in the denominator is finite so that

this scaling is possible, then the process is stationary. We have previously

seen that this is not the case if we include the demographic component of

the infinitesimal variance.
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In section 3.6.1 we saw that the model for Nt with the Gompertz type of

density regulation and no demographic stochasticity could be transformed to

an Ornstein-Uhlenbeck process by the log transformation. With the notation

given above the parameters in the transformed process were α = r1 − σ2
e/2,

β = r1/ lnK, and σ2 = σ2
e , where r1 were the specific growth rate at Nt = 1.

It follows that the stationary distribution of Xt = lnNt is normal with mean

[1− σ2
e/(2r1)] lnK and variance σ2

e lnK/(2r1). By transforming back we see

that the stationary distribution of Nt is the lognormal distribution. Using

the expressions for the mean and variance of the lognormal given in 1.3 we

find the mean and the coefficient of variation of the stationary distribution

is

EN = K
1− σ2e

4r1

C(N) = SD(N)/EN = [K
σ2e
2r1 − 1]1/2.

We see that increasing environmental stochasticity decreases the mean and

increases the coefficient of variation of the stationary distribution in this

model.

3.9 Some stationary distributions

3.9.1 The logistic model

For the logistic model with no demographic stochasticity the infinitesimal

mean is µ(n) = rn(1 − n/K) and the variance ν(n) = σ2
en

2. Since σ2
d is

ignored n = 0 is a natural lower barrier for the process that cannot be

reached. From the definition of s(n) we then find

s(n) = exp(−2
∫ n rx(1− x/K)

σ2
ex

2
dx) = kn

− 2r

σ2e e
2r

σ2eK
n
,

where k is some constant depending on the lower integration limit. Then,

using the definition m(n) = 1/[s(n)ν(n)] and performing the appropriate
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scaling, we see that the solution is the gamma distribution

f(n) =
αβ

Γ(β)
nβ−1e−αn,

where the scale parameter α = 2r/(σ2
eK) and the shape parameter is β =

2s/σ2
e , and s = r − σ2

e/2 as before. Using the well known expression for the

mean and variance of the gamma distribution we find

EN = β/α = K(1− σ2
e

2r
)

varN = β/α2 =
σ2
e

2r
K2(1− σ2

e

2r
).

3.9.2 The theta-logistic model

Let us again consider the more general theta-logistic model without demo-

graphic stochasticity, writing

µ(n) = rn[1− (n/K)θ]

ν(n) = σ2
en

2,

where r = r1/(1 − K−θ). Performing the integration in the expression for

s(n) we find that the stationary distribution for θ 6= 0 takes the form

f(n;K,α, θ) = Cnα−1e−
(α+1)
θ

(n/K)θ

where α = 2r/σ2
e − 1 = 2s/σ2

e , which must be assumed positive. Introducing

the new variable y = (n/K)θ and integrate we find the complete distribution

f(n;K,α, θ) =
|θ|(α+1

θ
)α/θ

KΓ(α/θ)
(n/K)α−1e−

(α+1)
θ

(n/K)θ for θ 6= 0,

which has moments

ENp =
KpΓ(α+p

θ
)

Γ(α
θ
)(α+1

θ
)p/θ
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Figure 3.5: The stationary distribution for the theta-logistic model, the gen-
eralized gamma distribution, for different values of θ. The other parameters
are K = 100, σ2

e = 0.01, and r1 = 0.1.

for p = 1, 2, . . . .. From this expression the mean and variance may be com-

puted. This distribution is called the generalized gamma distribution and

usually written on a different parametric form in the literature.

For θ = 1 this is the gamma distribution with shape parameter α and scale

parameter (α+ 1)/K in accordance with 3.9.1. Notice that K is a scale pa-

rameter of the distribution f(n;K,α, θ), while α and θ are shape parameters.

If θ = α the distribution is the Weibull distribution and if θ = −1 it is the

inverse gamma distribution.

To confirm that the limiting distribution as θ approaches zero is the lognor-

mal in accordance with 3.8.4 we introduce z = n/K, and observe that the

distribution of z is proportional to zα−1e−(α+1
θ

)zθ . Expanding the exponent
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at θ = 0 we find

exp[−(α + 1)/θ − 2 ln(z)− 1

2
(α + 1)θ ln(z)2 + ...].

Absorbing the constant in the constant factor of the distribution and observ-

ing that (α + 1)θ approaches β = 2r1
σ2
e lnK

as θ tends to zero, we find that the

limiting distribution is proportional to (1/z) exp[− ln(z)− 1
2
β ln(z)2] or pro-

portional to (1/z) exp[−1
2
β(ln(z) + 1/β)2]. Hence, the limiting distribution

of z is the lognormal distribution, and the corresponding distribution of ln(z)

is N [−1/β, 1/β]. Finally, since lnn = ln z + lnK we see that the limiting

distribution of ln(Nt) is normal with mean ln(K)[1− σ2
e/(2r1)] and variance

σ2
e ln(K)/(2r1) in accordance with what we previously have found.

In the limit as θ approaches infinity we obtain the model with no density-

regulation below K and a reflecting barrier at K. We find by studying the

limit (exercise 16) that the stationary distribution for this model is

f(n;K,α,∞) =
α

Kα
nα−1

for 0 ≤ n ≤ K, and otherwise zero.

The stationary distribution for different values of θ, keeping K, r1 and σ2
e

constant, are shown in Fig.3.5.

3.9.3 The Beverton-Holt model

The Beverton-Holt model is usually associated with age-structured popula-

tions. If individuals reach the adult state after one year and their vital rates

are not age-dependent the model assumes the individuals on average produce

α/(1 + βn) individuals the next season when the population size is n. If the

adult survival is s the expected population size next year is n[α/(1+βn)+s]

so that

E(∆N |N = n) = µ(n) = n[α/(1 + βn) + s− 1].

The carrying capacity of the deterministic model determined by µ(K) = 0 is

accordingly

K =
α + s− 1

β(1− s)
.
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Assuming large population sizes and constant environmental variance σ2
e the

diffusion approximation has infinitesimal mean and variance µ(n) and ν(n) =

σ2
en

2, respectively. This leads to

s(n) = exp

[
− 2

σ2
e

∫ n
(

α

n(1 + βn)
+
s− 1

n

)
dn

]
.

Integrating using partial fractions then gives

s(n) = exp

[
−2(α + s− 1)

σ2
e

lnn+
2α

σ2
e

ln(1 + βn)

]

giving a stationary distribution

f(n) = cn2(α+s−1)/σ2
e (1 + βn)−2α/σ2

en−2.

This has the form of a beta distribution of the second kind

f(n) =
Γ(p+ q)βp

Γ(p)Γ(q)

np−1

(1 + βn)p+q

where p = 2(α+s−σ2
e/2−1)/σ2

e and q = 2(1 +σ2
e/2−s)/σ2

e . The mean and

variance of this distribution is p/[β(q−1)] and p(p+q−1)/[β2(q−1)2(q−2)].

Inserting the expressions for p and q we find the expected population size

EN =
α + s− 1− σ2

e/s

β(1− s)

which equals K for σ2
e = 0 as expected. The squared coefficient of variation

is

C2
N =

σ2
e(α− σ2

e/2)

2(1− s− σ2
e/2)(α + s− 1− σ2

e/2)
.

3.10 Quasi-stationary distributions

If the demographic stochasticity is included in the model, or if the extinction

barrier is chosen at Nt = 1, the probability of ultimate extinction will usually

be one, which means that the process is not stationary and no stationary
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distribution exists. However, most populations are in any case likely to go

on fluctuating around the carrying capacity for a very long time. We have

seen in section 3.8.1 that the Green function then expresses the expected

time the process spends at each state. Further, the expected time until

extinction, which is the integral of the Green function from the extinction

barrier to infinity, is then finite. If we then scale the Green function by its

integral, we obtain a distribution, actually

q(n;n0) = G(n, n0)/
∫ ∞
a

G(z, n0)dz,

where a is the extinction barrier. This distribution is called the quasi-

stationary distribution of the process. Notice that this distribution, contrary

to the stationary distribution, depends on the initial state n0, though this

dependence often in practice will be very week.

The quasi-stationary distribution is not really the distribution of some stochas-

tic variable in the model. However, it expresses the expected properties of

the population fluctuations from the initiation at n0 and up to the time of

extinction. Properties of this distribution, such as the mean and the variance

are very useful quantities in the characterization of the process. Actually,

the interpretation of the distribution is also very close to the practical in-

terpretation of a stationary distribution by the following argument: The

ratios q(n1;n0)/q(n2;n0) and f(n1)/f(n2) for some two states n1 and n2,

both expresses the ratio between the expected time the process spends in the

intervals (n1, n1 + ∆n) and (n2, n2 + ∆n) as ∆n approaches zero. The dif-

ference is that for a stationary process this refers to an infinite time interval

while for the quasi-stationary distribution the ratio refers to the finite time

interval from initiation and up to extinction. Notice also, by the definition of

the Green function for biological processes given in section 3.8.1, that both

distributions have exactly the same shape for n > n0 if the parameters other

than the extinction barrier are the same, since they are both proportional

to m(n). For n < n0, however, the stationary distribution is proportional to

m(n) while the quasi-stationary distribution is proportional to m(n)S(n).
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Figure 3.6: The stationary distribution, the gamma distribution, for the

logistic model with absorbing barrier at zero and parameters r = 0.1, K =

300 and σ2
e = 0.01 (solid line) together with the quasi-stationary distribution

with N0 = K obtained by adding demographic variance σ2
d = 1 to the model.

In section 3.9.1 we showed that the stationary distribution for the logistic

model with extinction barrier at zero and σ2
d = 0 is the gamma distribution.

In Fig.3.6 this stationary distribution is depicted together with the quasi-

stationary distributions for the non-stationary case of the same model ob-

tained by choosing σ2
d = 1 and n0 = K.
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3.11 Extinction and population viability

3.11.1 Definitions of population viability

Viability of populations is judged according to many different criteria, using

all obtainable information of the species. One such criterium is based on

considering the probability that the populations goes extinct during a given

time interval. Commonly populations are classified as viable if the risk of

extinction within one hundred years is less than 10%. If the parameters

describing the population fluctuations, the mean specific growth rate and

the carrying capacity are known, this criteria for viability may alternatively

be expressed by the model parameters and the initial population size. In this

section we present some results for the diffusion approximation that may be

applied to perform such characterizations. More generally, the above criteria

may be expressed as

P (T > tv) > 1− αv

so that the above criterium is obtained by choosing tv = 100 years and

αv = 0.1.

For populations that are far below their carrying capacity, which is often the

case when populations are threatened with extinction, a geometric growth

model may be applied. The main problem will then be to compute the min-

imum population size n0 required for the population to be viable according

to the above definition. On the other hand, fragmentation or other human

activities may have the effect on the population parameters, in particular

the carrying capacity. One may then be interested in linking the concept of

viability to this population parameter, assuming that the initial population

size is close to K, and compute the minimum value of K required to make

the population viable.

We emphasize that we make no statistical analysis in this chapter, but only

theoretical characterizations of the concept of viability. A full viability anal-

ysis requires that parameters are estimated from time series data and/or

data on individual survival and reproduction. Since the amount of data, in
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particular the number of years a time series is recorded, is usually small,

uncertainties in the estimates may be a major problem. For example, the

estimator of the minimum K required for viability, or the estimate of the

probability of extinction, will have uncertainties that are so large that the

characterization of the population as viable or not viable can not really be

done in practise. We shall see in chapter 5 that these problems require that

the viability analysis in practice should be approached by using the concept

of statistical predictions.

3.11.2 The exponential approximation for density reg-

ulated populations

We have seen that for populations which are density regulated, the probabil-

ity of ultimate extinction is one if the demographic stochasticity is included

or the extinction barrier is chosen at N = 1. The expected time to extinction

is then the integral of the Green function

ET =
∫ ∞
a

G(n, n0)dn,

where a is the extinction barrier and n0 the initial population size. For

most populations the expected time to extinction will be quite large. This is

illustrated in Fig.3.7, where the expected time to extinction for the logistic

model is shown for different parameter values. Consequently, a population

which initially is not very much smaller than K will fluctuate around its

carrying capacity and return to K a very large number of times. Since

diffusions are Markov processes, the distribution of the time to extinction

each time K is passed is the same. Hence, the process will approximately

have the property that P (T > u + t|T > u) does not depend on u. Writing

G(t) = P (T > t) this leads to

G(u+ t)/G(u) = ψ(t)

for some function ψ with ψ(0) = 1. This relation may be written as

G(u+ t)−G(u)

t
=
ψ(t)− ψ(0)

t
G(u).
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Figure 3.7: The upper panel shows log10 of the expected time to extinction

at N = 0 in the logistic model as a function of r for K = 500, σ2
e = 0.04,

σ2
d = 1, and N0 = K = 500. The lower panel gives log10 of the expected time

to extinction at N = 0 in the same model as a function of K for r = 0.05,

σ2
e = 0.01, σ2

d = 1, and N0 = K.
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As t approaches zero this leads to G′(u) = kG(u), where k = ψ′(0). As a

consequence, G(u) = exp(−ku), which means that the distribution of the

time to extinction is exponential with mean 1/k, that is

P (T < t) ≈ 1− exp(−t/ET ).

An important consequence is that a population may, with fairly large prob-

ability, go extinct a long time before the expected time to extinction. As an

example, consider a population with expected time to extinction ET = 2000

years. Then, the probability that this population goes extinct before 500

years is approximately 1−exp(−500/2000) = 0.2212, while extinctions before

200 and 100 years occur with probabilities 0.0952 and 0.0488, respectively.

The definition of viability based on the α-quantile of the distribution of time

to extinction can now simply be expressed by the expected time to extinction,

that is

ET > −tv/ ln(1− αv).

Using tv = 100 and α = 0.1 we see that populations are viable if ET is at

least 950 years.

Fig.3.8 shows the minimum K required required for viability according to

this definition for some different parameter values in the logistic model with

demographic and environmental stochasticity.

3.11.3 Extinctions in populations without density reg-

ulation

In section 3.8.2 we found the probability of ultimate extinction for the geo-

metric growth model

µ(n) = rn

ν(n) = σ2
dn+ σ2

en
2.

The more general problem of finding the distribution of the time to extinction

has fairly simple solutions in the cases where either the demographic or the
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tion at most 0.1 within a 100 years period for the logistic type of model.

There is one graph for four different values of the environmental variance.
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rying capacity.
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Figure 3.9: The inverse Gaussian distribution of the time to extinction in a

Brownian motion for different values of the stochastic growth rate s. The

initial population size is n0 = 200 = ex0 and the environmental variance is

0.01.

environmental variance is zero. If σ2
d = 0 we have seen that Xt = lnNt

is a Brownian motion with drift parameter s = r − σ2
e/2 and infinitesimal

variance σ2
e . If x0 is the initial state of the process Xt at t = 0 and the

extinction barrier is at zero, it is a well known result that the distribution of

the time to extinction is the inverse Gaussian distribution shown in Fig.3.9

g(t) =
x0√

2πσ2
et

3
exp[−(x0 + st)2

2σ2
et

].

If the extinction barrier is at a, then x0 should simply be replaced by x0− a.

If s < 0 this is a proper distribution in the sense that the integral from zero to
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infinity of g(t) is one. If s ≥ 0, we have previously seen that the process may

be absorbed at infinity in which case the same integral equals the probability

of ultimate extinction given in section 3.8.2, which is exp(−2sx0/σ
2
e). The

cumulative distribution (exercise 17) is given by

G(t) = P (T ≤ t) = Φ(−st+ x0

σe
√
t

) + e−2sx0/σ2
eΦ(

st− x0

σe
√
t

),

where Φ(x) =
∫ x
−∞ exp(−x2/2)dx is the standard normal integral. Notice

that the probability of ultimate extinction, which is G(∞), is one if s < 0

and exp(−2sx0/σ
2
e) if s > 0, in agreement with the result in 3.8.2.

The geometric Brownian motion model is most realistic for viability analysis

when stochastic growth rate s = r − σ2
e/2 is negative so that the population

is unlikely to become large enough for density regulation to occur. In this

case the last term of the cumulative inverse Gaussian G(tv) will be quite

small when we insert tv = 100. Then the requirement P (T < tv) < α is the

fulfilled if

Φ(−stv + x0

σe
√
tv

) < α

giving

x0 > σe
√
tvuα − stv

where uα denotes the upper α quantile of the standard normal distribution.

Inserting tv = 100 and α = 0.1 we find simply

n0 = exp(x0) > exp(12.82σe − 100s).

For σ2
e = 0.04, r = −0.02 we find s = −0.04 giving that the required popula-

tion size is 709 individuals. However, it is important to be aware of the fact

that the demographic component of stochasticity always will have the effect

of increasing this threshold.

In case of no extinction barrier we have seen that the distribution of Xt

is simply normal with mean x0 + st and variance σ2
et. When there is an

extinction barrier at Xt = 0 this distribution is no longer applicable. At a

given time t, the process has either gone extinct, which occur with probability
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G(t), or the population is still present with Xt > 0. The distribution of Xt

in the case of an extinction barrier is also known. With our parameterization

this probability density takes the form

h(x; t) =
1√

2πtσe
[1− e−2xx0/(σ2

et)]e−(x−x0−st)2/(2σ2
et).

This distribution may be integrated (exercise 18) to give P (Xt > x) =∫∞
x h(z; t)dz, giving

H(x; t) = P (Xt ≤ x) = Φ(
x− x0 − st

σe
√
t

) + e−2sx0/σ2
eΦ(

st− x− x0

σe
√
t

)].

Notice that H(0; t) = P (Xt = 0) = P (T ≤ t) = G(t) as expected. Notice

also that H(x; t) is different from the corresponding cumulative distribution

in the case of no extinction barrier (exercise 19).

For some small populations the environmental fluctuations may be ignored

compared to those generated by demographic stochasticity giving the model

with µ(n) = rn and ν(n) = σ2
dn. The distribution of the time to extinction

at zero for this model has the simple form

P (T < t) = exp[− 2n0re
rt

σ2
d(e

rt − 1)
]

for r 6= 0, and exp[−2n0/(σ
2
dt)] for r = 0. For r > 0 the limit obtained as t

approaches infinity gives that the probability of ultimate extinction at zero

is exp(−2rn0/σ
2
d). In section 3.8.2 we found that the probability of ultimate

extinction at N = 1 for this model was the same expression with n0 replaced

by n0 − 1. For r ≤ 0 we see that ultimate extinction is a certain event.

No simple expression for the time to extinction is known when the demo-

graphic as well as the environmental variance is included, so we have to rely

on stochastic simulations of the process. Fig.3.10 shows some examples of

how the distribution of the time to extinction is affected by the demographic

stochasticity, and in section 3.13 we explain how these simulations may be

speeded up when s > 0.
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Figure 3.10: The probability of extinction (cumulative distribution) ap-

proximated by stochastic simulations of the model with infinitesimal mean

µ(n) = rn and variance ν(n) = σ2
dn + σ2

en
2 for different values of σ2

d. The

other parameters are r = 0.025, σ2
e = 0.04, and n0 = 500. The extinction

barrier is at n=1 and the frequencies are base on 1000 simulations.
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3.11.4 Some results on the scaling of the time to ex-

tinction

We have seen that the Green function involves so many integrations that an

analytic expression only can be found in some few special cases, for example

models for population growth without density regulation. The expected time

to extinction, which is the integral of the Green function, is even more un-

likely to reduce to a simple analytical expression. When density regulation

is introduced, even quite simple models, such as for example the Ornstein-

Uhlenbeck process, leads to complicated expressions for the expected time to

extinction that can only be computed by numerical integrations.

On the other hand, it would be of great interest in population biology to

have some general insight about the relations between the time to extinc-

tion and basic population parameters such as the specific growth rate, the

environmental variance, demographic variance, and the carrying capacity. A

simplified but still quite informative model that can be used to investigate

such relations, is the model with exponential growth up to K, a reflecting

barrier at K and extinctions occurring at N = 1. Hence, below the carrying

capacity the dynamics is exactly the same as we have analyzed for density

independent models in section 3.8.2. The simplest way of dealing with the

reflecting barrier at K is first to allow the population to exceed K but in-

troduce some density regulation above K so that return to K is certain,

and then remove any time interval in which the population path is above K.

Clearly, the expected time to extinction in the resulting model with reflec-

tion at K must then simply be the integral of the Green function over the

interval from the extinction barrier and up to K, since this is the total time

the process spends in the same interval. Another way of seeing this result is

to start with the theta-logistic model and let θ approach infinity. In the limit

we then obtain the same model with reflection at K, and it is easy to see

that s(n) tends to infinity for n > K, which implies that m(n) and the Green

function is zero above K. Consequently, if we choose the initial population

size to be at K while the extinction barrier and the lower integration limit
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in S(n) are at N = 1, we have

G(n,K) = 2m(n)S(n)

for 1 < n < K and zero for n > K. Using the definitions of s(n) and S(n) we

then find (exercise 20) S(n) = (1+δ)−γ−(n+δ)−γ, and s(n) = γ(n+δ)−γ−1,

where γ = 2s/σ2
e = 2r/σ2

e − 1, and δ = σ2
d/σ

2
e . This leads to the Green

function

G(n;K) =
1

sn
[(
n+ δ

1 + δ
)γ − 1]

for σ2
e > 0. For σ2

e = 0 the solution takes the form

G(n;K) =
1

sn
[e2s(n−1)/σ2

d − 1].

Since the Green function does not depend on K other than that the function

is zero for n > K, we also have the relation

d(ET )

dK
=

1

sK
[(
K + δ

1 + δ
)γ − 1]

In Fig.3.11 sdET/dK is plotted against K for different values of γ. A simple

analytic solution of the integral can only be found when the demographic

variance is ignored, that is when δ = 0, giving

ET =
1

s
[(Kγ − 1)/γ − lnK].

If γ is positive and not very close to zero we find that the expected time to

extinction is approximately proportional to Kγ.

3.12 Autocorrelations

Though the stationary distribution of a stationary process contains all infor-

mation of the magnitude of the population fluctuations, it does not tell us

anything about how quickly, or how often, the process will return to K, which

is an important aspect in practical applications. For example, if we multiply
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the infinitesimal mean and variance by the same constant, the functions s(x)

and S(x) are unchanged, and so is the stationary distribution. In fact, this

multiplication corresponds to just changing the speed of the process, so it

will have a large effect on the return time to equilibrium.

For a stationary process the autocorrelation corr[Xt, Xt+h] = ρ(h) depends

on the time step h only. If this correlation is large, Xt and Xt+h will be close.

In other words, Xt contains much information on Xt+h in the sense that if

Xt is large, we also expect Xt+h to be large. Hence, if ρ(h) is positive and

declines slowly with h, the return time to equilibrium is likely to be large.

For processes with time-lag, the autocorrelation may also be negative, which

indicates a return to equilibrium that is likely to be followed by an amplitude

in the opposite direction.

It turns out that stationary diffusions with a linear infinitesimal mean µ(x) =

α − βx have an exponentially decreasing autocorrelation regardless the in-

finitesimal variance. This can be seen by considering the covariance

cov(Xt, Xt+h+dh) = cov(Xt, Xt+h + dXt+h),

and insert dXt+h = (α − βXt+h)dt +
√
ν(x)dtU , where U is a standardized

variable which is independent of Xt. This leads to

cov(Xt, Xt+h+dh) = (1− βdh)cov(Xt, Xt+h).

Dividing by the variance of the stationary distribution we then find

[ρ(h+ dh)− ρ(h)]/dh = −βρ(h).

The left side is the derivative of the autocorrelation function, and the solution

of the differential equation with boundary condition ρ(0) = 1 is simply

ρ(h) = exp(−βh).

We see immediately that this applies to the Ornstein-Uhlenbeck process

which has linear infinitesimal mean. In section 3.7 we demonstrated how
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many other processes fluctuating around a carrying capacity may be approx-

imated by such a process. For this approximations we found the coefficient

β = −µ′(K), which means that exp(µ′(K)h) is often a good approximation

to the autocorrelation. The scaling of the autocorrelation may be defined

by the time difference TR that gives a correlation of 1/e. Using the au-

tocorrelation function based on approximating the process by an Ornstein-

Uhlenbeck process we find TR ≈ −1/µ′(K). For the discrete stochastic model

Nt+1 = Λ(Nt)Nt the Ito-approximation gives the diffusion with infinitesimal

mean µ(n) = n[λ(n) − 1], where λ(n) = E[Λ(N)|N = n]. Hence, since

µ′(K) = Kλ′(K), the scaling of the autocorrelation is TR ≈ −1/[Kλ′(K)],

which is exactly the same as the return time to equilibrium for the analogue

deterministic model discussed in section 2.1.

In section 3.6.1 we showed that a model with the Gompertz type of density

regulation and no demographic stochasticity transformed to the Ornstein-

Uhlenbeck process by the log-transformation. Consequently, using the same

notation, we have corr(lnNt, lnNt+h) = exp(−r1h/ lnK). For the theta-

logistic model with θ 6= 0, still ignoring demographic stochasticity, we demon-

strated in section 3.6.2 that the transformation Yt = N−θt lead to a linear

infinitesimal mean for Yt. Consequently we have exactly

corr(N−θt , N−θt+h) = exp(−θrh)

for this model.

3.13 * Conditional diffusions

Even if the time to extinction often will be extremely large, extinction is the

ultimate fate of any population. It may therefore be of some importance

to investigate how fast populations approaches the extinction barrier when

they finally go extinct. For populations fluctuating around their carrying

capacity one may for example consider the time it takes from the last time

the population passes the carrying capacity until it goes extinct. And when
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there is no density regulation, we may be interested in the time to extinction

conditional on extinction occurring, that is, considering only those sample

paths that do not grow to infinity.

This type of analysis may be performed by defining the so-called conditional

diffusion. Consider a diffusion with infinitesimal mean and variance µ(n) and

ν(n), which is initiated at X0 = x0 between a and b, a < b. One can show

that if we only consider the sample paths reaching a before b, we still have a

diffusion process, say N∗t . This process has infinitesimal mean and variance

µ∗(n) = µ(n)− s(n)ν(n)/[S(b)− S(n)]

ν∗(n) = ν(n),

when the lower integration limit of S(n) is chosen at a.

Consider the geometric growth model with demographic and environmental

stochasticity, that is, with µ(n) = rn and ν(n) = σ2
dn+σ2

en
2. If the stochastic

growth-rate s = r − σ2
e/2 is negative, then ultimate extinction is certain, so

we consider the case when s is positive. If we chose b to be at infinity, the

process N∗t is the diffusion conditioned on the event of ultimate extinction

actually occurring. Choosing the extinction barrier at a = 1 and using the

expressions for s(n) and S(n) derived in 3.8.2 we find (exercise 21) that the

last term to be subtracted in µ∗(n) is simply 2sn, giving

µ∗(n) = (−s+ σ2
e/2)n,

while the infinitesimal variance is unaltered. Hence, we see that the condi-

tional diffusion belongs to the same parametric class of models. The param-

eter s is simply replaced by −s. This is an important result when it comes to

simulating the process to extinction in cases where s > 0. If A is the event

of ultimate extinction and T the time to extinction we have

P (T ≤ t) = P (T ≤ t|A)P (A) + P (T ≤ t|A∗)P (A∗),

where A∗ denotes the compliment of A. If A∗ occurs, the process is ultimately

absorbed at infinity, so the event T ≤ t has probability zero. Hence,

P (T ≤ t) = P (T ≤ t|A)P (A).
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Here, the conditional probability may be found by simulating the conditional

process, that is, the process with s replaced by −s, a large number of times

and record the frequencies of extinctions. Obviously, we now reach extinction

much more often than if we were to simulate the process with positive s. The

expression for P (A) is given in 3.8.2.

A well known special case of this result is found for σ2
d = 0. Then s is replaced

by −s in the geometric Brownian motion. Transforming to log-scale we see

that the drift parameter in the conditional Brownian motion just changes

sign as well. For s < 0 we have seen that the expected time to extinction at

zero is simply −x0/s, where x0 = lnn0. Hence, when the drift parameter s is

positive, the expected time to extinction, conditional on extinction occurring,

is x0/s.

From the above analysis it appears that the larger the positive growth rate

is the quicker will the final decline towards extinction be. This may seem

as a paradox, but may to some extent be explained intuitively. The popu-

lation can only go extinct if a large number of random events accidentally

act together to decrease the population size. The mathematical results tell

us that when the growth rate is large this must necessarily happen rather

quickly if extinction shall occur, while if the growth rate is only a little larger

than zero, these random forces may be spread over a longer period of time.

The probability that such a final decline should happen, however, decreases

strongly as the growth rate increases.

Fig.3.12 shows simulations of the final decline to extinction for a logistic

model.

3.14 Stochastic differential equations

For the diffusion process with infinitesimal mean and variance µ(x) and ν(x),

respectively, we have by definition that E(dX) = µ(X)dt and var(dX) =

ν(X)dt. If Bt is a standard Brownian motion the process may be written on
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the form

dX = µ(X)dt+
√
ν(X)dB,

where dB = Bt+dt − Bt. Notice that this is the continuous analogy to the

discrete process in 3.2 that we used to motivate diffusions. Since E(dB) = 0

and var(dB) = dt we see that this formulation is consistent with the above

expressions for E(dX) and var(dX). The model may then formally be ex-

pressed as

dX = µ(X)dt+
√
ν(X)Wtdt

where Wt = dB/dt at time t is called Gaussian white noise. Formally, for

a small dt we find EWt = 0 and var(Wt) = 1/dt, so the variance actually

approaches infinity as dt approaches zero. Hence, the white noise process is

not really well defined and this cause some problems when it comes to inte-

gration. For Brownian motions we also have that EdBtdBt+h = 0 implying

that corr(Wt,Wt+h) = 0. Notice that, by introducing the concept of white

noise, the model may formally be written as a differential equation, actually

the stochastic differential equation

dX/dt = µ(X) +
√
ν(X)Wt.

As already mentioned, integration of such an equation, called stochastic inte-

gration, is difficult and not uniquely defined. Different methods (Ito-integral,

Stratonovich integral) may lead to different results. Here we only show the

simple example of solving the Ornstein-Uhlenbeck process, in which case

these problems do not occur due to the nice linear form of the solution.

The OU-process written as a stochastic differential equation takes the form

dXt = (α− βXt)dt+ σdB(t).

The solution of the homogenous equation dX/dt = α−βX yields the solution

Xt = α/β + Ce−βt.

Inserting a function C(t) for the integration constant C in the original equa-

tion we find (exercise 22) assuming that the process starts at x0 at time zero
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that

Xt = α/β + (x0 − α/β)e−βt + σ
∫ t

0
e−β(t−u)dB(u).

Since this solution is linear in dB(t) it follows that Xt is normally distributed

because any increment B(t+h)−dB(t) is normally distributed by definition.

Taking the expectation and using EdB(t) = 0 we find the expected value

E(Xt|X0 = x0) = α/β + (x0 − α/β)e−βt

as given in 3.8.4. To find the variance we use the continuous analogy of the

formula for a sum of independent random variables considering
∫
e−β(t−u)dB(u)

as a sum of small independent increments during time intervals ∆u, e−β(t−u)∆B(u),

and going to the limit. Since var[∆B(u)] = ∆u we then find

var(Xt|X0 = x0) = σ2
∫ t

0
e−2β(t−u)du =

σ2

2β
(1− e−2βt).

3.15 Autocorrelated noise

3.15.1 Diffusion approximations to discrete models with

autocorrelated noise

The environmental variables affecting the stochastic terms in the change in

population size at different seasons may have temporal correlation. For ex-

ample, there may be autocorrelations in the physical environments of the

population. If death rates and fecundity vary with the age of the individ-

ual, an age-structured population model may be required. If we then only

deal with the total population size and not the whole population vector, the

model will no longer be a Markov process and age-structure will generate

autocorrelations. This will be dealt with in chapter 4.

In 1.8.3 we introduced the concept of autocorrelations in models for exponen-

tial growth. These autocorrelations did not have any effect on the stochastic

growth rate, but could dramatically change the variance of future population
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sizes. More precisely, for large values of t we found

var(lnNt|N0)

t
≈ σ2

∞∑
−∞

ρ(i)

where σ2 = var(ln Λt) and the autocorrelation function is defined by ρ(h) =

corr(ln Λt, ln Λt+h). If there are no autocorrelations the process Xt = lnNt

can be approximated by a Brownian motion with infinitesimal mean and vari-

ance µ = E ln Λ and σ2, respectively. For large values of t, the discrete model

as well as the Brownian motion will have the property that Xt is normal with

mean x0 + µt and variance σ2t. On the other hand, if there are autocorrela-

tions in the discrete process, then Xt is approximately normal with the same

mean but with variance σ2t
∑∞
−∞ ρ(i). Hence, the appropriate Brownian mo-

tion to use as a continuous approximation when there are autocorrelations

in the noise has infinitesimal mean µ and infinitesimal variance σ2∑∞
−∞ ρ(i).

Since the autocorrelation most realistically is positive, we see that autocor-

relations must be compensated by an increase in the infinitesimal variance

of the Brownian motion.

For the general type of discrete process with autocorrelations in the noise,

the same kind of approximation may be used. Consider the discrete model

with

∆Xt = µ(Xt) +
√
ν(Xt)Ut,

where Ut is some noise process with EUt = 0, var(Ut) = 1 and corr(Ut, Ut+h) =

ρ(h). In accordance with the previous argument the diffusion approxima-

tion to this process has infinitesimal mean µ(x) and infinitesimal variance

ν(x)
∑∞
−∞ ρ(i). The best approximation is obtained if one works on the log-

scale rather than modelling directly the populations sizes. This is because

the approximation is constructed for population growth with no density-

regulation (constant growth rate) and constant variances, which is approx-

imately correct on the log scale for small moderate population fluctuations

around the carrying capacity. Further, one cannot expect a good approxima-

tion if the scaling of the autocorrelations for the process is not much larger

than the scaling of the autocorrelations of the noise process. Fig.3.13 shows
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Figure 3.13: Simulations of the discrete autocorrelated process (solid lines)

and the diffusion approximation (dashed line). The model is the logistic type

with r = 0.1, K = 1000, σ2
e = 0.01, and σ2

d = 0. The parameter γ (see main

text) is 0.3 in the upper panel, 0.5 in the middle and 0.8 in the lower panel.
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some simulations of a discrete process with autocorrelations together with

some simulations of the relevant diffusion approximation. The noise process

is chosen as Ut = (1 − γ2)1/2Vt + γUt−1 where −1 < γ < 1 and the Vt are

independent and uniformly distributed on [−1/2, 1/2]. This gives ρ(h) = γ|h|

and
∑∞
−∞ ρ(i) = (1 + γ)/(1− γ). As a consequence the infinitesimal variance

of the diffusion approximation should be ν(x)(1 + γ)/(1− γ).

Fig.3.14 shows the same comparison over a period of 1000 years and γ as large

as 0.8. We see that even for such a highly correlated noise process the diffu-

sion approximation seems to show the same kind of large scale fluctuations

as those for the process with autocorrelated noise, although the diffusion will

always have larger fluctuations over small time intervals. These small scale

fluctuations of diffusions are actually the nature of any diffusion processes.

3.15.2 Diffusion approximations to continuous models

with colored noise

Suppose now that we now replace the white noise Wt by a colored noise

process Zt with EZt = 0, var(Zt) = σ2 and autocorrelation function ρ(h).

Writing Vt =
∫ t
0 Ztdt we find in analogy with what we did for discrete pro-

cesses
varVt
σ2t

=
∫ t

−t
ρ(x)dx− 2

t

∫ t

0
xρ(x)dx.

Hence, provided that
∫∞

0 xρ(x)dx is finite varVt/t approaches τ 2 = σ2
∫∞
−∞ ρ(x)dx

as t increases towards infinity. This suggests that Vt can be replaced by the

Brownian motion with zero mean and infinitesimal variance τ 2. The corre-

sponding population process would then be

dX = µ(X)dt+
√
ν(x)τdB.

Hence, the infinitesimal variance of the diffusion approximation to the above

process with colored noise should be ν(x)τ 2.

In order to exemplify this, let the noise process Zt be the Ornstein-Uhlenbeck

process with infinitesimal mean and variance −βz and ω2, respectively. For
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Figure 3.14: The same model as in the lower panel of Fig.3.13 with γ = 0.8

but showing the processes separately for 1000 years. The upper panel is

the process with autocorrelated noise and the lower panel is the diffusion

approximation.
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Figure 3.15: Simulations of the continuous processes (left panels) of the

logistic type during 200 years with r = 0.1, K = 1000, and σ2
e = 0.01

with noise process Zt of the Ornstein-Uhlenbeck type shown together with

histograms (right panels) of the stationary distributions based on 30000 years.

In the upper panel β = 0.3, in the middle β = 2 and in the lower β = 100.

In all simulations ω2 = β2. In the process with β = 100 the noise Zt is

practically white noise.

this process we have that EZt = 0, var(Zt) = ω2/(2β) and ρ(h) = exp(−βh).

This leads to τ 2 = ω2/β2. Hence any process with ω2 = β2, that is with

τ 2 = 1, should be approximated by the same diffusion since the noise Zt

of the process can be approximated by the same white noise process Wt.

As β approaches infinity ρ(h) approaches zero for h > 0. Hence, this limit

corresponds to the diffusion provided that ω2 is kept equal to β2, that is ω2

also approaches infinity. Then also var(Z) approaches infinity in accordance

with what we found for the white noise process Wt.

The accuracy of this diffusion approximation depends on the value of β.

The approximation will break down for small values of β corresponding to
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considerable autocorrelations in the noise over large time differences. Fig.3.15

shows the simulations of a logistic process Xt with noise Zt for different values

of β2 = ω2 including the diffusion, together with histograms for the stationary

distributions..

3.16 The accuracy of the diffusion approxi-

mation

We see from Fig.3.15 that a process with considerable temporal autocorre-

lation in the noise may be approximated by a diffusion with white noise.

Comparing the histograms for the stationary distributions (left panel) it ap-

pears that the diffusion approximation is quite good.

The best way to make comparisons with a given process and its diffusion

approximation is to simulate a large number of processes over a long time

interval and compare the distribution of population sizes each year. In this

way we can also judge to which extent the diffusion approximation can be

applied to calculate approximations for the expected time to extinction, dis-

tribution of the time to extinction, distribution of future population sizes or

the stationary distribution in the case of stationarity. It is important, how-

ever, that these comparisons are done correctly, that is, that we use exactly

the mean and variance functions for the process as the infinitesimal mean

and variance in the diffusion approximation.

Usually the extinction barrier is chosen at N = 0 or N = 1. This means that

the process do show large discrete steps compared to N the last time period

before extinction occurs. One may therefore tend to think that the diffusion

is no good as an approximation for analyzing extinction processes when the

barriers are so small. Furthermore, real populations may frequently show

fairly large between years fluctuations. Ignoring the demographic stochastic-

ity, we have seen that the between years fluctuations in the growth rate r has

variance σ2
e and consequently a standard deviation of σe so we can think of

the next years population size being the previous population size multiplied
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by the factor which is often larger than λ + σe and smaller that λ − σe. If

λ = 1 and the environmental variance is σ2
e = 0.01, then σe = 0.1, and these

two factors are 1.1 and 0.90. Hence, this environmental variance reflects

rather large between years fluctuations as we already have demonstrated in

a number of graphs. If σ2
e = 0.04 the same factors are 1.2 and 0.8 with a

ratio of 1.2/0.8 = 1.5. Hence there is a very large uncertainty with respect

to next years population size.

In Fig.3.16 we see a model in discrete time with normally distributed between

years change on log population size together with the diffusion approxima-

tion to this model. It appears that the diffusion approximation performs

extremely well, actually all the way down to extinction. In Fig.3.17 we show

a model in discrete time as well as discrete population sizes, the model defined

in section 2.4.2 with Poisson distributed contributions to the next generation.

Even if this is a model with discrete population sizes and an environmental

variance as large as 0.04, the diffusion approximation still performs well, not

only for prediction of future population sizes but also for the distribution of

the time to extinction at N = 1. This is quite remarkable, taken into ac-

count that the demographic contribution to the variance of Λ in this model

is also large at small population sizes. Actually σ2
d = 1 + r(K − N)/K in

this model so for a population size N = 10 the demographic contribution to

var(Λ) is approximately 1.02/10 ≈ 0.10, giving a total standard deviation in

Λ as large as
√

0.04 + 0.10 = 0.66. In Fig.3.18 the environmental variance

is increased to σ2
e = 0.09, corresponding to a standard error of Λ as large as

0.3 excluding the demographic contribution. At population size 10 the total

standard deviation of Λ is now 0.5. We see that the diffusion approximation

is no longer accurate, although it still gives the time to extinction with error

only about 10%.
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Figure 3.16: Quantiles of the distribution of log population size as function

of time found from 10000 stochastic simulations. The model is of the logistic

type and the initial population size is at the carrying capacity. The solid

lines show the results for the discrete time model with normally distributed

changes in ln(N) from one year to the next, while the dotted lines are sim-

ulations of the diffusions. The parameters are r = 0.02, K = 200, σ2
e = 0.01

and σ2
d = 1.
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Figure 3.17: The solid lines show quantiles of the distribution of population

size as function of time for the logistic Poisson type of model defined in 2.7.2

with additive stochastic effect on λ(z, N). The parameters are r = 0.02, K =

200 and σ2
e = 0.04. The initial population size is at the carrying capacity.

The dotted lines shows the same quantiles for the diffusion approximation.

The graphs are based on 10000 simulations for each model.
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Figure 3.18: The same as Fig.3.17 but with larger environmental variance,

σ2
e = 0.09.
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3.17 Exercises

1. The diffusion approximation for the discrete process Nt with no density-

regulation and constant environmental and demographic variance has infinitesimal

mean and variance µ(n) = rn and ν(n) = σ2
dn + σ2

en
2. Find the corresponding

infinitesimal mean and variance for the process Xt = lnNt.

2. For the model in exercise 1 find the unstable equilibrium point for the process

Xt defined by µX(x∗) = 0 and the corresponding population size n∗ = exp(x∗).
3. Consider the diffusion Nt with with infinitesimal mean and variance µ(n) =

r1n(1 − lnn/ lnK) and ν(n) = σ2
en

2 . Show that Xt = lnNt is an Ornstein-

Uhlenbeck process and find the parameters of this process expressed by r1, K and

σ2
e .

4. Let Nt be the diffusion approximation to the theta-logistic model with no de-

mographic variance and constant environmental variance, that is, the infinitesimal

mean and variance are µ(n) = rn(1 − nθ

Kθ ) and ν(n) = σ2
en

2 for θ 6= 0. Find the

infinitesimal mean and variance for the process Xt = N θ
t .

5. For the process in exercise 4 show that Yt = N−θt has infinitesimal mean of the

same linear form as the Ornstein-Uhlenbeck process.

6. For the process Nt with infinitesimal variance ν(n) = σ2
dn find a transformation

that gives a process with constant infinitesimal variance.

7. Let Nt be a diffusion with infinitesimal variance ν(n) = σ2
dn+σ2

en
2. Show that

the process Xt = σ−1
e {lnNt + 2 ln[1 +

√
1 + σ2

d/(σ
2
eNt)] − b} where b = 2 ln(1 +√

1 + σ2
d/σ

2
e) has constant environmental variance.

8. Consider the diffusion for N with infinitesimal mean and variance µ(n) and

ν(n) = σ2
en

2. Suppose that ν(n) is a decreasing function with µ(K) = 0. Find

the infinitesimal mean and variance for the process X = lnN . Then linearize

the infinitesimal mean for X around X = lnK (N = K). Show that this lin-

ear approximation is the Ornstein-Uhlenbeck process with infinitesimal mean and

variance µ′(K)(x− lnK)− σ2
e/2 and σ2

e .

9. Consider a diffusion model with absorbing barriers at a and b, a < b which is

in state N0 at time zero. Suppose that the infinitesimal mean for small values of

n is rn and that the infinitesimal variance is ν(n) = σ2
en

2. Choose 1 as the lower

integration limits in the formulas and show that the probability that the process
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is absorbed at b tends to one as a tends to zero provided that s = r − 1
2σ

2
e > 0.

How do you interpret this result as b approaches infinity?

10. Consider the model in exercise 9 but add a demographic term σ2
dn to the

infinitesimal variance. Show that the process now may be absorbed at a if a = 0

and s > 0.

11. For the model in exercise 9 suppose that the population is density-regulated

with negative infinitesimal mean above K decreasing with increasing population

sizes. Show that extinction now is certain at a = 1.

12. Perform the integrations required to find s(x), S(x) and u(x0) for the Brownian

motion given in 3.8.2.

13. Find s(n), S(n) and the probability of ultimate extinction at n = 1 for the

model µ(n) = rn, ν(n) = σ2
dn + σ2

en
2 given in 3.8.2 when the initial population

size is n0.

14. Find the probability of ultimate extinction for the model in exercise 13 for

σ2
e = 0 by finding the limit as σ2

e → 0.

15. Use our definition (interpretation) of the Green function to show that E[
∫ T
0 h(Xt)dt] =∫ b

a h(x)G(x, x0)dx.

16. Find the limit of the stationary distribution for the theta-logistic model as

θ →∞.

17. Show that the inverse Gaussian distribution g(t) = x0√
2πσ2

et
3

exp[− (x0+st)2

2σ2
et

] has

cumulative distribution G(t) = Φ(− st+x0
σe
√
t
) + e−2sx0/σ2

eΦ( st−x0
σe
√
t
).

18. Show that the distribution of log population size in the Brownian motion

conditioned on extinction not occurring before time t,

h(x; t) = 1√
2πtσe

[1− e−2xx0/(σ2
et)]e−(x−x0−st)2/(2σ2

et) has cumulative distribution

H(x; t) = P (Xt ≤ x) = Φ(x−x0−st
σe
√
t

) + e−2sx0/σ2
eΦ( st−x−x0

σe
√
t

)].

19. Consider the geometric brownian motion with µ(n) = rn, ν(n) = σ2
en

2 and

initial state n0 > 0 at time t = 0. Compare the expressions for P (Nt > n) when

there is no extinction barrier and when extinction occur at N = 1. Discuss the

result.

20. For the ceiling model with exponential growth and constant environmental

and demographic variance show that S(n) = (1 + δ)−γ − (n + δ)−γ , and s(n) =

γ(n + δ)−γ−1, where γ = 2s/σ2
e = 2r/σ2

e − 1, and δ = σ2
d/σ

2
e , and from this find

the Green function G(n;K) = 1
sn [(n+δ

1+δ )γ − 1] for n < K.
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21. Consider the diffusion with infinitesimal mean and variance µ(n) = rn and

ν(n) = σ2
dn + σ2

en
2 and hence stochastic growth rate s = r − σ2

e/2 for large

population sizes. For s > 0 show that the conditional diffusion, conditioning on

extinction to occur, has infinitesimal mean µ∗(n) = (−s+ σ2
e/2)n.

22. Verify the solution to the OU-processXt = α/β+(x0−α/β)e−βt+σ
∫ t
0 e
−βtdB(t)

by solving the stochastic differential equation.
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Chapter 4

Age-structured populations

4.1 Introduction

We have until now dealt with female segments of populations with overlap-

ping generations by assuming that all females at the time of census have

identical distributions of vital rates within years. Although individuals may

live for a long time we cannot obtain improved predictions or better under-

standing of the dynamics by separating the population into age-classes when

this assumption of equivalent individuals is realistic. However, a large num-

ber of organisms will have survival and reproductive rates that change with

age. Many species will not be mature until a certain age, reproduction may

last for a number of years at changing rate and stop when the individual

gets older, as for example for humans. If survival rates were constant, their

lifetime would be geometrically distributed, which is only rarely the case.

Survival rate will often be small for quite young individuals, larger in an

intermediate period and decrease for old individuals.

The dynamics of age-structured populations with changing vital rates will

differ from the simplified case of equivalent individuals. The expected change

in populations size is no longer just a function of the female population size

the previous year, but depends also on the composition of the population,

the distribution of individuals among age-classes.

119
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In this chapter we shall deal with the description of the dynamics of age-

structured populations, still only considering the female segment, assuming

that there is no lack of males. We first consider the classical deterministic

theory without density-regulation, which in the stochastic case can be ap-

plied to analyze the expected value of future population sizes. Then we go

on analyzing stochastic fluctuations in vital rates. It appears that these may

be decomposed into environmental end demographic components, and that

a stochastic growth rate can be defined for the populations as in the sim-

ple case. The diffusion approximation will also often still be applicable for

the total population size. These results can then be utilized to find rather

accurate predictions of future population size, and to analysis of extinction

processes. The theory is extended to include density-regulated populations

with stochastic fluctuations around a stable equilibrium.

For many species the determination of age may be difficult. The vital rates

may also not be determined by age, but rather by weight or stage. One should

then work with stage-structured models rather than age-structure which in

general may be more complicated. However, if each stage is reached at a fixed

age, the formulation given here, possibly with minor technical modifications,

is still applicable.

4.2 Deterministic theory

4.2.1 Population growth rate and stable age-distribution

Let n = (n1, n2, . . . , nk)
′, where ′ denotes matrix transposition, be the popu-

lation vector with elements ni, the number of individuals of age i just prior

to reproduction. As k is the last age-class, the survival from age k to k + 1

is assumed to be zero. The life history is determined by the age-specific re-

productive rates, pi, the proportion surviving from age i to i+ 1, and fi, the

number of female offspring surviving to the next census produced by each
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female of age i. The deterministic projection equations are then

n1 + ∆n1 =
k∑
i=1

fini

ni + ∆ni = pi−1ni−1 for i = 2, 3, . . . , k.

Except for some very special choices of parameter values which hardly oc-

cur in practice, this population will approach a stable age-distribution, say

u = (u1, u2, . . . , uk)
′ with

∑
ui = 1, and total population size growing ex-

ponentially in time with multiplicative rate λ. Assuming the stable age-

distribution has been reached we then have uipi = λui+1, or ui+1 = uipi/λ

for i > 1. Solving these equations recursively gives ui = u1li/λ
i−1 for

i = 2, 3 . . . , k, where li is the probability that an individual survives to age i,

li = p1p2 . . . pi−1 for i = 2, 3, . . . , k

and l1 = 1. Inserting this into the equation for reproduction yields

λu1 =
k∑
i=1

fiui =
k∑
i=1

fiu1li/λ
i−1.

Dividing the equation by λu1 produces the Euler-Lotka equation

k∑
i=1

lifiλ
−i = 1.

This polynomial equation of degree k will generally have k different solutions

for λ. However, since the expression on the left side is a decreasing function

of λ, decreasing from infinity to zero as λ increases from zero to infinity there

is only one real root that must be positive. This root, λ1, can be shown to be

the root with the largest modulus. The modulus of the root with the second

largest modulus, |λ2|, determines the multiplicative rate of approach to the

stable age-distribution, |λ2|/λ1. From now on the dominant eigenvalue λ1

will for simplicity be denoted λ. Hence, this parameter has essentially the

same interpretation as λ in chapter 1.
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Using the fact that
∑
ui = 1 we find the stable age distribution

ui = liλ
−i/

k∑
j=1

ljλ
−j.

Notice that if the population size is constant, λ = 1, then the ui are propor-

tional to li. For a growing population λ is greater than 1, giving relatively

larger values of ui for young individuals which means that there are relatively

more young individuals, whereas decreasing populations will have relatively

more old individuals.

For realistic parameter values the age-distribution usually approaches the

stable age-distribution within a few generations as exemplified in Fig.4.1.

The generation time T is defined as the mean age of mothers of newborn in-

dividuals when the population has reached the stable age-distribution. Using

the above Euler-Votka equation (exercise 2) gives

T =
k∑
i=1

ilifiλ
−i.

4.2.2 Reproductive value

Starting initially with a total population size of N0 = ni individuals, all of

the same age i at time t = 0, the population will asymptotically reach the

stable age-distribution and grow exponentially with multiplicative rate λ.

Hence the population size Nt at time t will approximately be proportional to

λt, or more precisely, Nt/λ
t approaches a constant, say nivi. The parameter

vi, first introduced by R.A. Fisher, is called the reproductive value of indi-

viduals of age i. It expresses these individuals ability to contribute to future

generations. For example, if v2 = 2v1, individuals of age 2 will contribute

with twice as many individuals to future generations as those in the first

age-class.

Since the individuals in the k’th age-class do not survive, the contribution

to the next generation from nk individual is simply nkfk individuals, all

of age 1. At time t these individuals contribute with nkfkv1λ
t−1, giving
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Figure 4.1: Deterministic growth of the total population size (upper panel)

and change in age-distribution through time (lower panel) in a deterministic

matrix model of the Lefkovitch with 10 stages, corresponding to ages 1-

9 and the last stage contains individuals of age 10 and older. Parameter

values are pi = 0.55 for all classes, f1 = 0 and fi = 1 for i > 1. Initially

n1 = 20 and ni = 0 for i > 1 at time zero. The dashed line shows the

exact exponential growth in the case that the 20 individuals originally were

distributed according to the stable age-distribution for the model. The dotted

line shows the growth of the reproductive value.
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nkvkλ
t = nkfkv1λ

t−1 or

fkv1 = λvk.

Arguing in the same way for the other age-classes we find the relation niviλ
t =

nipivi+1λ
t−1 + nifiv1λ

t−1 , giving

fiv1 + pivi+1 = λvi

for i = 1, 2, . . . , k− 1. These equations determine the reproductive values up

to a constant factor. One solution is (exercise 3)

v′i =
λi

li

k∑
j=i

ljfjλ
−j.

We find the correct scaling of the reproductive values by considering a popu-

lation initially of size N0 having the stable age-distribution. Asymptotically

the population size will then be N0
∑
uiviλ

t. On the other hand, this popu-

lation grow exactly with multiplicative rate λ, so the population size is also

N0λ
t giving

∑
uivi = 1. Consequently, the above v′i must be multiplied by

the factor (
∑
uiv
′
i)
−1 to give the correct scaling, that is

vi = v′i/(
∑

uiv
′
i).

The total reproductive value of the population, say V =
∑
nivi, is the sum of

the reproductive values of all individuals. Notice that for a population with

the stable age-distribution the total reproductive value is identical to the

population size since then ni = Nui giving V =
∑
nivi =

∑
Nuivi = N , so

in this case the population vector is n = V u. Now, consider an initial popula-

tion N0 =
∑
ni with reproductive value V0 =

∑
nivi at time zero. According

to the above results this population will asymptotically reach the stable age-

distribution and grow exponentially so that Nt/λ
t approaches

∑
nivi = V0.

This means that Vt/V0 and hence Nt/V0 approaches λt as t increases. The

stronger result that the reproductive value has exactly exponential growth

with multiplicative rate λ can be showed by using the linear equations for

the reproductive values (exercise 4). We shall show this result in a simpler

way in the next section using matrix algebra.
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4.2.3 Matrix formulation

The projection equations are most conveniently written on matrix form

nt+1 = lnt where nt = (n1, n2, . . . , nk)
′ is the population vector at time t

and L is the projection matrix

l =



f1 f2 · · · fk

p1 0 · · ·
0 p2 0 · · ·
· · ·
· · · pk−1 0


commonly called the Leslie matrix. For a stage-structured population the

corresponding matrix is called a Lefkovitch matrix. Using the projection

equation recursively we obtain nt = ltn0. The asymptotic multiplicative

growth rate of the population is the dominant eigenvalue λ of the projection

matrix l. The stable age distribution denoted by the column vector u =

(u1, u2, . . . , uk)
′ is the right dominant eigenvector defined by lu = λu and

scaled so that
∑
ui = 1. The reproductive values are given by the row vector

v = (v1, v2, . . . , vk) defined by vl = λv and scaled by
∑
uivi = 1 (exercise

5). The Perron-Frobenius Theorem for matrices with non-negative elements

guarantees that the dominant eigenvalue is unique, real, and positive, and

that the elements of u and v are non-negative.

We can now see immediately that the reproductive value has exactly expo-

nential growth with multiplicative rate λ. The total reproductive value after

one generation is v(n + ∆n) = vln = λvn and hence changes exactly by the

factor λ from one generation to the next.

The sensitivity of λ with respect to one of the non-zero elements lij of l is

defined as the partial derivative ∂λ/∂lij. The way we have scaled the eigen-

vectors a result from matrix algebra gives simply ∂λ/∂lij = viuj. These sensi-

tivities will later play an important part in the derivation of approximations

to the stochastic growth rate and environmental and demographic variance

of and age-structured process in a stochastic environment (see section 4.3).
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4.3 Stochastic age-structured model

4.3.1 Introduction

The deterministic age structured model leading to exponential growth is

a generalization of the simple deterministic multiplicative model we dealt

with in chapter 1. This model was used to construct stochastic models

by analyzing the stochastic properties of the multiplicative factor. Writing

N + ∆N = ΛN we saw in the case of no density-regulation that the mean

value EΛ = λ was constant and that the variance could be decomposed into

two components generated by different mechanisms, the demographic and en-

vironmental variance, σ2
d and σ2

e , with a total variance var(Λ) = σ2
e + σ2

d/N .

The age structured model is, however, more complicated. As shown in Fig.4.1

the population do not grow exactly exponentially so the multiplicative factor

is not constant even in the deterministic case. Furthermore, we had previ-

ously only two vital rates, survival and fecundity of adults, while the Leslie

matrix has 2k − 1 vital rates. Introducing stochastic vital rates in the age

structured model will generate stochastic fluctuations in the multiplicative

rate that will act together with the deterministic fluctuations of the type

shown in Fig.4.1. Even if the environmental vector acting on the vital rates

has no temporal autocorrelation, the age-structure fluctuations will there-

fore, through the deterministic component, create temporal autocorrelations

in the multiplicative factor acting on the total population size. We shall see

how this problem can be solved by utilizing the nice properties of the total re-

productive rate given in 4.2.2. The two mechanisms generating stochasticity

in vital rates, that is, the environment’s effect on the mean value a given year

and the stochastic variability between individuals, are still operating in age

structured populations. We shall se how this enables us to define a stochastic

growth rate as well as an environmental and demographic variance also for

age structured models in such a way that these three parameters contains

almost all information about the process for the total population size in the

case of no density-regulation.
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4.3.2 Stochastic projection matrices

A population n = (n1, n2, . . . , nk)
′ contributes to the population the next year

n + ∆n through each individuals survival and reproduction. For example,

the number of individuals of age 2 will be the number of individuals of age 1

the previous year that survive. Defining indicator variables for their survival

(1 for survival 0 for death), the next years age-class is simply the sum of

these indicators. Writing J̄2 for the mean of these indicators, the sum can be

written as n2J̄2. Hence, the element of the projection matrix, corresponding

to p2 in the deterministic case, is J̄2. Similarly, writing B̄i for the mean

number of offspring produced by individuals of age i, the number of offspring

produced by individuals in age-class i is niB̄i. Hence, we can still write the

change from one year to the next on matrix form, n + ∆n = Mn, where

M =



B̄1 B̄2 · · · B̄k

J̄1 0 · · ·
0 J̄2 0 · · ·
· · ·
· · · J̄k−1 0


Writing as before z for the environmental vector acting on the population,

we define Fi as the expected number of offspring produced by an individual

of age i in environment z. Writing Bi for the number of offspring produced

by a randomly chosen individual of age i, we then have Fi = E(Bi|z). Sim-

ilarly for the survivals we define Pi = E(Ji|z). For a large population, the

mean values of the rates within years will be approximately the expected val-

ues conditioned on the environment. Hence, the matrix operating on large

populations is

L(z) = E(M|z) =



F1 F2 · · · Fk

P1 0 · · ·
0 P2 0 · · ·
· · ·
· · · Pk−1 0


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The unconditional expected value of the matrices M and the expectation of L

are the same through the theorem on double expectation, EM = EE(M|z) =

EL. The deterministic theory in the previous section can now be interpreted

as a theory for the expected population vector by interpreting l as EL = EM

writing fi = EFi = EE(Bi|z) and pi = EPi = EE(Ji|z). Then, if the

environmental vectors z are independent between years we have E(nt|n0) =

ltn0 which means that the projection matrix l operates on the expected

population En, so that all results given for the deterministic case are valid

replacing the population vector n by its expectation En. The vectors u and

v are in the following the right and left eigenvalues of the expected matrix l

as defined in 4.2.3.

4.3.3 Reproductive value dynamics

We have seen that there are fluctuations in total population size in the de-

terministic case. However, if we work with the total reproductive value V of

the population rather than the population size, these fluctuations disappear,

and the deterministic growth is exactly exponential. We have also seen that

if the age-distribution is close to the stable age-distribution defined by the

Leslie matrix l, then V ≈ N . This indicates that stochastic dynamics also

may be easier to describe if we work with Vt rather than Nt. The autocor-

relations found in time series of age-structured populations are often mainly

due to the deterministic components of the fluctuations around the exponen-

tial growth curve generated by deviations from the stable age distribution.

Since the process Vt does not show these initial fluctuations we should expect

the stochastic dynamics of the reproductive value, to be simpler than that

of Nt. We then separate the population vector n into two components, one

vector with components exactly proportional to the stable age-distribution,

and another vector defining the deviation from this distribution. This latter

component we define as

x = n/V − u.
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If the population has the stable age-distribution then n = V u so that the

corresponding value of x is the zero vector. The population vector can now

be written as

n = V (u + x).

The total population size N is the sum of the components, that is

N = V (1 +X)

where the notation X is used for the sum of the components of x.

In order to investigate the dynamics of the reproductive value we write Mt =

l + εt for then matrix operating at time t, where the stochastic deviation εt

has zero expectation. The dynamics of the reproductive value is then given

by

Vt+1 = vnt+1 = vMtnt = v(l + εt)nt = λVt + vεtnt.

If we ignore second order terms by approximating nt in the stochastic term

by a vector proportional to the stable age distribution, that is nt ≈ Vtu we

find

Vt+1 = λVt(1 + λ−1vεtu),

and var[Vt+1|Vt] ≈ V 2
t var[vεu] = V 2

t σ
2
V . Writing vεu =

∑
viεijuj, the gen-

eral formula for the variance of a sum of random variables gives

σ2
V = var[vεu] =

∑
ij

∑
kl

viujvkulcov[εij, εkl].

Since ∂λ/∂lij = viuj and M = l+ε this variance can alternatively be written

as

σ2
V =

∑
ij

∑
kl

∂λ

∂lij

∂λ

∂lkl
cov[Mij,Mkl].

The stochastic growth rate for the reproductive value, that is, the expected

growth on log scale, is

s = E[lnVt+1 − lnVt| lnVt] ≈ r + E ln(1 + λ−1vεtu),
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where r = lnλ is the growth of the deterministic model defined by l. As-

suming that the stochastic term is small and using the second order approx-

imation for the logarithm we find s ≈ r − 1
2
λ−2var[vεu]. Again using the

relation ∂λ/∂lij = viuj we obtain the following formulas for the stochastic

growth rate and the variance function,

s = r − 1

2
σ2
V and σ2 = λ−2σ2

V .

To this order of approximation the process for the log reproductive value can

now be written as

lnVt+1 = lnVt + s+ ξt

where ξt = λ−1vεtu so that Eξt = 0 and var[ξt] = σ2 = λ−2σ2
V . To the first

order, this process has no autocorrelation in the noise ξt if the stochastic

projection matrices, Mt, are independent between years. Hence the process

for the reproductive value is of the same type as the corresponding population

process without age-structure, that is, a simple random walk. This implies

that the process for the log reproductive value can be approximated by a

diffusion with infinitesimal mean s and variance σ2.

4.3.4 Environmental and demographic variance

The variance function σ2
V is a linear combination of covariances cov(Mij,Mkl).

The elements of M are all mean values over all individuals in an age-class

of their number of offspring or the indicator for their survival. In chapter 1

we decomposed the contribution from each individual w into its expectation

and an environmental as well as a demographic component so that the mean

fitness had variance σ2
e + σ2

d/N where σ2
d = Evar(w|z) and σ2

e = varE(w|z).

The same kind of decomposition can be done for an age structured population

using the general formula for the total covariance

cov[Mij,Mkl] = Ecov[Mij,Mkl|z] + cov[E(Mij|z),E(Mkl|z)].

Here the first term describes demographic variation generated by variations

conditioned on the environmental vector z while the second is an environmen-
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tal component generated by temporal variation in z. Using this decomposi-

tion and the previous notation E(Mij|z) = Lij the expression for σ2 = λ−2σ2
V

can be decomposed accordingly, giving

σ2 =
∑
ij

∑
kl

λ−2viujvkulEcov[Mij,Mkl|z] +
∑
ij

∑
kl

λ−2viujvkulcov[Lij, Lkl].

The second term is the environmental variance for the age structured process.

Writing as before r = lnλ this term can be written on the form

σ2
e =

∑
ij

∑
kl

∂r

∂lij

∂r

∂lkl
cov[Lij, Lkl].

Notice that σ2 is the variance on the log scale. Hence, as mentioned in

chapter 1, we now work on the log scale and include the factor λ−2 in the

definitions of environmental and demographic variances.

In order to analyze the first term describing the demographic stochasticity

we introduce the bivariate variables (Bi, Ji), the number of offspring and

the indicator of survival for an individual of age i. The non-zero elements

of the matrix Mij are the mean fecundities M1j = B̄j and mean survivals

Mj+1,j = J̄j. Conditioned on the environment these are the mean values of

nj fecundities and indicators for survival, respectively. We also assume that

there are no demographic covariances (see section 2.4.5) so that the vital rates

are independent between individuals when conditioned on the environment.

Hence, cov[Mij,Mkl|z] is zero unless j = l. Further, cov[Mij,Mkj|z] is non-

zero only if i = k = 1, or i = k = j+1, or if one of the indices i, k is 1 and the

other j + 1. Defining the parameters σ2
Bi = Evar(Bi|z), σ2

Ji = Evar(Ji|z) =

E[Pi(1− Pi)|z] and σ2
BPi = Ecov(Bi, Ji|z) we find for example (exercise 6)

Ecov(M1j,M1j|z) = n−1
j σ2

Bj.

Using similar expressions for the other contributions we find that the total

demographic contribution can be written as (exercise 6)

λ−2
∑
ijkl

viujvkulEcov[Mij,Mkl|z] = λ−2
k∑
j=1

n−1
j u2

j [v
2
1σ

2
Bj+v

2
j+1σ

2
Pj+2vj+1v1σ

2
BPj].
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Now, approximating the age distribution by the stable age distribution we

have nj ≈ Nuj, showing that the demographic term is approximately σ2
d/N

where σ2
d is the demographic variance

σ2
d =

k∑
j=1

λ−2uj[v
2
1σ

2
Bj + v2

j+1σ
2
Pj + 2vj+1v1σ

2
BPj].

Since N ≈ V this indicates that the process for the logarithm of reproductive

value can be approximated by a diffusion with infinitesimal mean r−σ2
e/2−

σ2
d/(2V ) and variance σ2

e + σ2
d/V . For large populations the demographic

terms can be ignored and the dynamics can be approximated by a Brownian

motion with mean s = r − σ2
e/2 and variance σ2

e .

4.3.5 Simulation examples

As a first example let us consider a population with no environmental stochas-

ticity that at most produce one offspring each year. Then, the variables Bi

as well as Ji are simple indicators, so that σ2
Bi = Evar(Bi|z) = var(Bi) =

l1i(1 − l1i) and σ2
Ji = Evar(Ji|z) = var(Ji) = li+1,i(1 − l1+1,i). Hence, if

reproduction and survival are independent, this model has the interesting

property that the stochasticity is defined uniquely by the elements of the

expected Leslie matrix, the expression for the demographic variance being

σ2
d =

k∑
i=1

λ−2ui[v
2
1l1i(1− l1,i) + v2

i+1li+1,i(1− li+1,i)].

We have seen in section 3.11.3 that the cumulative distribution for the diffu-

sion approximation to this model is given by a simple analytical expression.

Fig.4.2 shows some simulation examples giving the cumulative distribution

for the time to extinction for this age structured process together with the cu-

mulative distribution for the corresponding diffusion approximation assuming

Nt ≈ Vt.

In Fig.4.3 a similar simulation example is shown with environmental as well

as demographic stochasticity and 15 age-classes. In the right panel the demo-

graphic stochasticity has been ignored. We see that the time to extinction is
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Figure 4.2: Cumulative distributions of time to extinction for processes with-

out environmental stochasticity. Dotted lines are the cumulative distribution

for the diffusion approximations, while the solid lines are based on stochastic

simulations of the age-structured process. The individual yearly fecundity is

restricted to take values 0 or 1. Demographic stochasticity is then uniquely

determined by the elements of the projection matrix. The initial population

size is 100. Parameter sets a and b are for populations with 4 age classes.

For set a the survivals are (0.4, 0.6, 0.9, 0.7), the fecundities (0, 0.6, 0.9,

0.7). For set b the growth rate is slightly positive so that the probability of

ultimate extinction is smaller than one. The survival rates in set b are the

same as in set a while the fecundities are (0, 0.6, 0.9, 0.8). Parameter sets c

and d are populations with 9 age-classes. The survivals in set c are (0.6, 0.7,

0.7, 0.8, 0.9, 0.9, 0.9, 0.7, 0.5), and the fecundities (0, 0, 0, 0.4, 0.5, 0.8, 0.8,

0.9, 0.8). The survivals in set d are (0.5, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 0.7, 0.5)

and the fecundities are (0, 0, 0, 0, 0.2, 0.5, 0.6, 0.9, 0.8).
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Figure 4.3: Stochastic simulations of an age-structured model with Pois-

son lognormally distributed number of offspring (exercise 7-9) with variance

3 times the mean value. The only parameter with environmental stochas-

ticity is the first year survival P1 assumed to have variance 0.04 between

years. The solid lines from bottom to top in the left panel are the 0.05,

0.25, 0.50, 0.75 and 0.95 quantiles computed from 100,000 simulations of the

full age-structured model while the dotted lines are from the corresponding

simulations of the diffusion approximation. The right panel shows the same

simulations of the full model ignoring demographic stochasticity, that is, us-

ing the matrix L instead of M . There are 15 age classes and the following

parameters: (f1, f2, . . . , f15) = (0, 0, 0, 0, 0, 0, 0, 0.5, 0.6, 0.7,

0.9, 1.0, 1.0, 1.0, 1.0), and (p1, p2, . . . , p15) = (0.5, 0.6, 0.7, 0.9, 0.95, 0.95, 0.95,

0.95, 0.9, 0.9, 0.85, 0.85, 0.8, 0.8, 0.6), and initial population size 20 for classes

1 to 10 and 15 for classes 11 to 15. This gives λ = 0.9813, σ2
e = 0.0011, and

σ2
d = 0.2615.
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then considerably larger, demonstrating how the demographic stochasticity

also for age structured populations speeds up the extinction process. Notice

the fluctuations of the quantiles in the beginning of the simulations. These

are generated by the same kind of fluctuations as we saw in the determinis-

tic case in Fig.4.1. In this case these fluctuations are rather large and last

for about 30 years because the simulations are started far from the stable

age distribution and there are as many as 15 age-classes. Nevertheless, the

quantiles for the reproductive value found from the diffusion approximation

are very close to the quantiles for the population size after 30 years.

4.3.6 Fluctuations in age-structure

We have seen in some simulation examples that the diffusion approximation

for the reproductive value process is often a good approximation to the total

population size for the full age structured model. However, we have also seen

that the reproductive value may be different from the total population size if

the age distribution deviates from the stable age distribution derived from the

expected projection matrix. In this section we analyze this deviation in some

more details. The deviation has been expressed by the vector x = n/V − u.

The basic dynamics of the population age vector, nt+1 = (l + εt)nt, can

be linearized by substituting nt = Vt(u + xt) and neglecting second-order

terms by assuming that the noise εt and the deviation from the stable age

distribution xt are both small,

nt+1 = lnt + Vtεtu

Premultiplying both sides by V −1
t (I− uv), where I is the identity matrix,

using the definition of xt produces

Vt+1

Vt
xt+1 = lxt + (I− uv)εtu.

In 4.3.3 we showed that Vt+1 = λVt(1 + λ−1vεtu) or Vt+1/Vt = λ + vεtu.

Inserting this in the above equation then shows that to first order (exercise
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11)

xt+1 = λ−1lxt + λ−1(I− uv)εtu.

From the definition of xt = nt/Vt − u we see that uvxt = 0. Utilizing this

we find that the dynamics of the residual variation around the stable age

distribution can be written as (exercise 12)

xt+1 = Axt + λ−1(I− uv)εtu

where A = λ−1l− uv.

One can show that the eigenvalues of A are 0, λ2/λ, λ3/λ, . . . (exercise 13).

This clarifies that increasing powers of A approach the zero matrix, such

that if εt is a stationary process the fluctuations in xt approach a stationary

process. Solving recursively produces (exercise 14)

xt = λ−1
∞∑
p=1

Ap−1(I− uv)εt−pu.

Since Nt = Vt(1 + Xt) there are two different properties of Xt that are of

great interest when analyzing age structured models. First, in order to check

the approximation Nt ≈ Vt we can calculate the standard deviation in the

stationary distribution of Xt. If this is much smaller than 1 the approxima-

tion is likely to be good at any point of time. Secondly, it is interesting to

study the memory of the process Xt, that is, how long time it takes before

it returns to its equilibrium value which is zero. This last property is given

by the above autocovariance function. If the autocorrelation at a given time

distance τ is small, Xt contains practically no information about Xt+τ so that

the distribution of Xt+τ conditioned on Xt is approximately the stationary

distribution of Xt.

Let us assume that the population is large enough for the demographic vari-

ance to be ignored so that the M = L has elements with constant variances

and covariances. To derive the moments of the stationary distribution of Xt

in this case, first note that Ext = 0 so EXt = 0. The autocovariance function

for Xt, given by cov[Xt, Xt+τ ], can be obtained from the sum of elements of
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the matrix E[xtx
′
t+τ ] where ′ denotes matrix transposition,

E[xtx
′
t+τ ] = λ−2

∞∑
p=1

GpSG′p+τ

where Gp = Ap−1(I − uv) and S = E[εuu′ε′] (exercise 15). The ele-

ments of S are given by Sij =
∑
kl ukulcov[Lik, Ljl]. The above expression

is useful for numerical computations of cov[Xt, Xt+τ ] and corr[Xt, Xt+τ ] =

cov[Xt, Xt+τ ]/cov[Xt, Xt].

Fig.4.4 shows the log population size and log reproductive value for a stochas-

tic age structured population. The lower panel shows the process 1 + Xt.

Notice that the fluctuations in Xt are rather small even if there is large

stochasticity in the model. The standard deviations of log fecundities are

as large as 0.2 while the standard deviation in ln(P1) is approximately 0.07.

The environmental variance in this model is σ2
e = 0.002548.

4.3.7 Estimating demographic and environmental vari-

ance

Let us first consider a population that is large enough for the demographic

variance to be ignored. We assume that the population is fully censused

with correct determination of age for each individual. If there is no density-

regulation we can then first estimate the expected leslie matrix l just using

the mean values of the observed survivals and fecundities for each age class.

We then compute the dominant eigenvalue for this matrix which is then

the estimate λ̂ of λ, and the corresponding left and right eigenvalues v̂ and

û as estimates of v and u. From these estimates we can compute the log

of the total reproductive, lnVt, for the time interval with observations, as

shown in Fig.4.4. The sequence of differences ln V̂t+1 − ln V̂t = ŝ + ε̂t is the

approximately a sequence of independent random variables with variance σ2
e

which we then estimate by standard sum of square.

If the demographic variance has to be taken into account we need data on

individual survival and reproduction as in the case of no age-structure dealt
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Figure 4.4: The upper panel shows log population size and log reproductive

value as function of time. There are 7 age classes. The mean fecundities

f1− f7 are 0, 0, 0.4, 0.8, 1.0, 0.8, 0.5, and mean survivals p1− p7 are 0.5, 0.9,

0.9, 0.8, 0.7, 0.6 and p7 = 0 giving λ = 1.0161. The only stochastic survival

is P1 = p1 exp(−0.5σ2
p + σpzp) where zp standard normally distributed. All

fecundities are stochastic with F1 = f1 exp(−0.5σ2
f +σfzf ), where zf also is a

standard normal variate. The correlation between zp and zf is 0.4, σ2
p = 0.005

and σ2
f = 0.04. This gives an environmental variance σ2

e = 0.002548.
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with in chapter 2.5. To obtain an estimate of σ2
d we need to estimate all

the components in the expression for σ2
d, which in addition to λ, v and u

are the variance components σ2
Bj, σ

2
Pj and σ2

BPj. These components can be

estimated by sum of squares over realized rates within years for each age

group to obtain an estimate of σ2
d valid for the population size that year

(exercise 17). This estimate can be plotted against population size.

If the demographic variance has to be taken into account we first estimate

the demographic variance form individual data. From the time series of

reproductive values we can then estimate the values of σ2
e + σ2

d/N each year

and subtract the demographic term. These yearly estimates should be plotted

against N as we did in chapter 2.5.

4.3.8 Density-regulation

In general the term density-regulation is used for the fact that the vital

rates, survivals and reproduction, may depend on the population size of the

species under consideration. For an age-structured population this means

that the distribution of the components of the projection matrix depends on

the sizes of the various age-classes. This will in general lead to very compli-

cated models, but for relatively small fluctuations around an equilibrium, a

simple linearization may be rather accurate. Assuming that there is a stable

equilibrium n̂ with corresponding total populations size K, we write l̂ for

the expected projection matrix at the equilibrium. This matrix has leading

eigenvalue equal to 1 and corresponding left and right eigenvector given by

v̂l = v and l̂u = u. The deviation from equilibrium can be denoted as vector

y defined by the relation n = K(u + y) = n̂ +Ky, where K is the carrying

capacity. For a population K(u+y) we linearize the expected matrix writing

l(n) = l̂+∆l where ∆lij = K
∑
k yk

∂lij
∂nk

where the derivatives are evaluated at

the equilibrium. Adding a noise matrix εt to the expected matrix as before,

we obtain the dynamic model

u + yt+1 = (̂l + ∆l + εt)(u + yt).
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Ignoring all second order terms and using l̂u = u produces

yt+1 = l̂yt + ∆l u + εtu.

Finally we can express ∆l u as −Dy where Dij = −K∑
k
∂lik
∂nj

uk giving the

dynamic equation

yt+1 = (l−D)yt + εtu.

Transforming back to the population vector by substituting y = n/K−u on

both sides then gives

nt+1 = Ant + B + εt

where A = l−D is a stability matrix, B = K(I−A)u is a constant vector

and the noise vector is εt = Kεtu.

If A and B are known or estimated from data, the population vector at

equilibrium is given by Ku where u = (I−A)−1B/K (exercise 18). We now

write w for the left eigenvalue of the stability matrix A and scale it by the

relation wu = 1 we now define the total reproductive value of the population

as Vt = wnt. Multiplying the dynamic equation by w and redefining λ to be

the dominant eigenvalue of A then leads to

Vt+1 = λVt + b+ δt

where b = wB and δt = wεt = Kwεtu.

Although this looks like a simple first order autoregressive model, the situa-

tion may in fact be more complicated. When there is no density-regulation

the Leslie matrix has a form that ensures the existence of a real dominant

eigenvalue. The matrix A, however, may have a number of negative elements,

and the dominant eigenvalue may be complex. In that case the reproductive

value given above is also complex and the equation for the reproductive value

describes a two-dimensional first order autoregressive model, the two dimen-

sions being the real and imaginary part of Vt. Notice however, that we have
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scaled the reproductive value in such a way that it is exactly equal to the

population size K at equilibrium so that the equilibrium value of the imag-

inary component necessarily is zero. When the density-regulation is week

the dominant eigenvalue may still be real so that the process for the total

population size can be approximated by the above one-dimensional process

for the reproductive value. If the eigenvalue with the second largest modulus

has modulus close to that of the dominant one, this approximation may not

be very accurate since the fluctuation around the reproductive value then

may interfere with the process for the reproductive value giving a more com-

plex dynamics. If λ is real we can define the strength of density-regulation

as we did for a population without age-structure, that is, as γ = 1 − λ. In

the complex case, however, the process is more complicated, and the density-

regulation depends on the imaginary as well as the real part of the dominant

eigenvalue.

Estimation may be performed by simple linear regression if population data

for all age-classes are available. Then, by the linear dynamic equation the

number of individuals in an age-class may be chosen as the dependent vari-

able, while all age-classes the previous year are covariates. One regression

must be done for each age-class to obtain an estimate of A and B. Since

the stochastic terms are likely to be dependent, uncertainties are best investi-

gated by bootstrapping, simulating the process from its initial value choosing

the noise vector randomly from the set of residual noise vectors obtained after

fitting the model.

Fig.4.5 shows an example of a fitted model for an island population of red-

deer where all individuals of age larger than 5 years are collected in one last

age-class. The real part of λ is estimated to be 0.64, while the imaginary

part is −0.39 (the sign of the imaginary part is not unique since the complex

eigenvalues occur in complex conjugated pairs). Fig. 4.6 shows the residuals

in the complex plane.
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Figure 4.5: The upper graphs are the observed total population size of an

island red-deer population (solid line) together with the real part of the

reproductive value (dotted line). The lower graph is the imaginary part of

the reproductive value fluctuating around zero.
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Figure 4.6: The complex residuals for the red-deer, that is, the deviations

between the complex Vt+1 and the prediction λVt + b+ δt.
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4.4 Exercises

1. Assume that individuals in the k’th age-class has survival pk and remain in

the k’th age-class, which is then a stage rather than an age, if they survive (as

in Fig.4.1). Find the equation for the asymptotic growth rate λ in this case

using the fact that the population approaches a stable age/stage-distribution

with exponential growth at rate λ.

2. Show that the generation time defined as the mean age of mothers of

newborn is T =
∑k
i=1 ilifiλ

−i.

3. Show that v′i = λi

li

∑k
j=i ljfjλ

−j is a solution to the set of linear equa-

tions for the reproductive values and that the reproductive values are vi =

v′i/(
∑
uiv
′
i).

4. Use the set of linear equations fiv1 + pivi+1 = λvi (with pk = 0) and the

projection equations for ni + ∆ni to show that the reproductive value grows

exactly exponentially with multiplicative rate λ, that is,
∑

(ni + ∆ni)vi =

λ
∑
nivi.

5. Show that the scaled right and left eigenvectors are identical to the stable

age-distribution and the reproductive values as defined in section 4.2.1 and

4.2.2.

6. Write out the details showing that σ2
d =

∑k
j=1 λ

−2uj[v
2
1σ

2
Bj + v2

j+1σ
2
Pj +

2vj+1v1σ
2
BPj].

7. Suppose that the distribution of a variable X conditioned on λ is Poisson

with mean λ. The unconditional distribution of X is then called a Poisson

mixture. Find the mean and variance of X expressed by the mean and

variance of λ.

8. Find an expression for the distribution of X in exercise 7 when λ has the

gamma distribution with scale parameter α and shape parameter k. This

distribution is called the negative binomial distribution. What is the mean

and variance of X expressed by α and k?

9. The Poisson lognormal distribution is the Poisson mixture for which the

mean of the Poisson distribution has the lognormal distribution. Find the

mean and variance of X expressed by the mean µ and variance σ2 of lnλ.
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10. Find the parameters σ2
Bi and σ2

Ji for the simulation model in Fig.4.3.

11. Show that xt+1 = λ−1lxt + λ−1(I− uv)εtu when higher order terms are

neglected.

12. Show that the dynamics of the residual variation around the stable age

distribution can be written as xt+1 = Axt + λ−1(I − uv)εtu where A =

λ−1l− uv.

13. Show that the eigenvalues of the matrix A = λ−1l−uv are 0, λ2/λ, λ3/λ, . . ..

Hint: The Leslie matrix l can be diagonalized, that is, there exists a matrix

P so that P−1lP = D, where D is a diagonal matrix with dii = λi, the i’th

line of P−1 is the left eigenvector of l associated with λi and the j’th column

of P is right eigenvector associated with λj.

14. Solve the dynamic equation in exercise 12 recursively to find xt =

λ−1∑∞
p=1 Ap−1(I− uv)εt−pu.

15. Show that E[xtx
′
t+τ ] = λ−2∑∞

p=1 GpSG′p+τ where Gp = Ap−1(I − uv)

and S = E[εuu′ε′].

16. For the model in Fig.4.4 show that the non-zero elements cov(Lij, Lkl) are

cov(L1i, L1j) = fifj(e
σ2
f −1), cov(L21, L21) = p2

1(eσ
2
p−1) and cov(L21, L1j) =

p1fj(e
ρσpσf − 1).

17. Show how to estimate the component σ2
B3, σ2

P3 and σ2
BP3 in the expres-

sion for the demographic variance on the basis of recorded reproduction and

survival for a number of individuals in age-class 3 a given year.

18. In the linear model with density-dependence show that the solution for

u given by solving nt+1 = Ant + B + εt is the right eigenvector of l̂.
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Chapter 5

Some applications

5.1 Harvesting

5.1.1 Introduction

We shall now see how some of the results given in earlier chapters may be used

to explore the effects of harvesting from populations using different harvesting

strategies. When harvesting (fishing hunting) from wild populations one is

always faced with the conflict between the goal of hunting a large amount

for economic reasons, and that of preserving the population. On the other

hand, these two goals are only in conflict with one another under a short

time horizon. In order to make an economic profit over a long time interval,

sustainability of the population necessarily has to be taken into account. A

population that is driven close to extinction cannot lead to economic profit

over long time intervals. A well known example is the overfishing of the

Norwegian spring spawning Herring towards the end of the sixties.

Fig.5.1 shows estimates of the spawning stock of this species during a 75

years period. A population collapse in 1967-68 due to overfishing also led to

a collapse of the herring fisheries that lasted for 30 years.

In this chapter we shall focus on some relatively simple ways of calculating

harvesting statistics for population processes that can be approximated by

147
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Figure 5.1: The spawning stock of the Norwegian spring spawning Herring

during the period 1921 to 1996.
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diffusions. These statistics can be used to explore the long term effects of

adopting different types of harvesting strategies, such as the mean amount

harvested, the distribution of yield between years and the expected time to

extinction or quasi-extinction.

Stochastic and deterministic harvesting models turns out to be rather differ-

ent although there are similarities. If the population growth is deterministic,

the population should obviously be kept at the population size where the

absolute growth ∆N takes its maximum value. For example, for a discrete

logistic deterministic model ∆N = rN(1 − N/K) the maximum growth is

obtained for N = K/2 giving ∆N = rK/4 which is then the constant amount

that can be harvested each season (exercise 1). However, for the correspond-

ing stochastic model ∆N = rtN − r̄N2/K where rt is subject to stochastic

fluctuations between seasons with mean r̄, the stochastic process Nt obtained

after subtracting the yield must be studied. The possibility of extinction and

long periods with very small population sizes must be explored in detail.

5.1.2 Diffusion model

If a population process can be approximated by a Markov process, harvesting

strategies should simply be some function of the population size expressing

how much should be harvested each season. If the population estimates are

uncertain, harvesting has to be based on the estimates and the uncertainty

in the estimates has to be taken into account. Initially we assume that

the population size is known. We write µ0(n) = E(∆N |N = n) and ν0(n) =

var(∆N |N = n) for the expectation and variance of the change in population

size in the absence of harvesting. Writing y(n) for the yield at population

size n, the diffusion approximation has infinitesimal mean and variance

µ(n) = µ0(n)− y(n)

and

ν(n) = ν0(n)
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provided that the yield can be chosen exactly and do not create any additional

stochastic terms. Our aim is now to investigate properties of the stochastic

process expressing the population size Nt as well as the process expressing

the harvest, that is y(Nt).

Provided that the harvest is not so aggressive that the population is soon

driven towards extinction, the quasi-stationary distribution of N and y(N)

will give considerable information about the consequences of adopting strat-

egy y(n). The possibility of extinction or quasi-extinction can be explored

by calculating the expected time until the process first reaches the chosen

barrier.

In chapter 3 we have seen how to calculate the Green function G(n, n0) for

the diffusion defined by µ(n) and ν(n) which is initially at population size n0.

Notice that the Green function now depends on the harvesting strategy y(n)

since this is subtracted in the infinitesimal mean. Choosing the extinction

barrier at N = 0 the expected time to extinction is given by

T (n0) =
∫ ∞

0
G(n, n0)dn.

A statistic that gives considerable insight is the expected total yield obtained

before the population eventually goes extinct when the initial population size

is n0 which we denote Y (n0). Mathematically this quantity is E
∫∞

0 y(Nt)dt.

We have seen in chapter 3 that this also can be computed from the Green

function as

Y (n0) = E
∫ ∞

0
y(Nt)dt =

∫ ∞
0

y(n)G(n, n0)dn.

The quasi-stationary distribution (see section 3.10) is

f(n) = G(n, n0)/T (n0).

Since the yearly harvest y(N) is just a function of the population size N

we can now find the quasi-stationary distribution of the harvest y(N) by

a straightforward transformation. In particular, the mean annual harvest

relative to the quasi-stationary distribution is
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Ey(N) =
∫ ∞

0
y(n)f(n)dn = Y (n0)/T (n0)

while the variance of the yield is

var[y(N)] =
∫ ∞

0
[y(n)− Ey(N)]2f(n)dn.

5.1.3 Some harvesting strategies

Some harvesting strategies can be performed without having any knowledge

about the population size. Others require that the population size is known.

A third class of strategies are those based on a yearly estimate of the pop-

ulation size and can be applied when such estimates are available, in which

case we need some information on the uncertainty of the estimator in order

to assess the properties of the harvesting tactic.

Constant harvesting

For the industry it is important to have a rather stable amount available each

year. In order to analyze the effect of a constant harvest we can consider the

model with infinitesimal mean

µ(n) = µ0(n)− y

and ν(n) = ν0(n), where y is now the constant yearly harvest independent

of population size. In chapters 2 and 3 we described density-regulated pop-

ulations by writing µ0(n) = r̄n− g(n) so that constant harvesting leads to

µ(n) = rn− g(n)− y.

This equation immediately indicates what is the major problem with this

harvesting tactic. Since g(n) is an increasing function and g(0) = 0, we see

that the infinitesimal mean becomes negative if n < y/r (see also exercise

2). This means that, if the population may reach values close to this due to

harvesting and stochastic effects, then the population will almost certainly
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reach extinction rather soon. Numerical analysis of this type of model has

also shown that the constant harvesting tactic has a destabilizing effect of

the population and lead to short expected time to extinction.

So, unless one actually relax this tactic by stopping the harvest when the

population size goes below a prescribed value (which is no longer constant

harvesting tactic), or we harvest at a very small constant rate, constant

harvesting is not sustainable and can not be recommended.

Proportional harvesting

It may often be a realistic assumption that the harvest for a given harvesting

effort is proportional to the population size. Then, for a given effort we have

µ(n) = µ0(n)− cn = (r − c)n− g(n)

and ν(n) = ν0(n), and c is a parameter indicating the harvesting effort. We

see that the effect of this harvesting on the population dynamics is found

simply by replacing the growth rate at small population sizes r by r − c

keeping the density-regulation g(n) unchanged.

We can exemplify this by the stationary logistic model with no demographic

stochasticity and extinction barrier at n = 0 given in 3.9.1.

Writing the infinitesimal mean as µ0(n) = rn(1 − n/K) = rn − an2 where

a = r/K, we first observe, in the case of no stochasticity (σ2
e = 0) that

the optimal value of c is r/2 giving maximum constant harvest Y = rK/4

(exercise 3).

With constant environmental variance σ2
e > 0 the mean (see 3.9.1) of the

stationary distribution when there is no harvesting is

EN = K

(
1− σ2

e

2r

)
=
r

a
− σ2

e

2a
.

Replacing r by r − c and multiplying by c we find the expected harvest

Ey = E(cN) = c

(
r − c
a
− σ2

e

2a

)

which is maximized for c = (r − σ2
e/2)/2 = s/2 corresponding to the maxi-

mum mean harvest
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Eymax =
s2K

4r

in accordance with the results for the deterministic model when σ2
e = 0. We

see in this model that increasing stochasticity leads to a reduction in the

maximum mean harvest, which is obtained by a more conservative tactic,

that is, by reducing the constant harvesting effort c.

For the same model with the Gompertz type of density regulation (exercise

5) dealt with in 3.6.1 and 3.8.4 we have

µ0(n) = r1n(1− lnn/ lnK)

giving, using the above approach (exercise 4),

Ey = c elnK(r1−σ2
e/4−c)/r1

which is maximized for c = r1/ lnK giving (exercise 5)

Eymax = K1−σ2
e/(4r1)r1e

−1/ lnK.

Fig.5.2 shows how the maximum mean harvest depends on the carrying ca-

pacity for this model.

Threshold harvesting

One can show that a number of different optimization problems for the dif-

fusion model has the so-called threshold tactic as solution. This tactic is

formally defined by a threshold c so that the harvest y(n; c) = 0 if n ≤ c and

y(n; c) =∞ if n > c. Hence, if the population size is below the threshold no

harvesting should be done, and as soon the population exceeds c it should

be harvested down to c. For example, one can show that the total expected

yield before extinction in general is maximized by choosing the threshold c

exactly at the carrying capacity.

In continuous time threshold harvesting implies that the population never

exceeds the threshold c. The Green function for the process turns out to be
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Figure 5.2: Maximum mean harvest in the Gompertz model as function of

the carrying capacity for different values of the environmental variance. The

growth rate is r1 = 0.1.
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equivalent to the Green function for the process without harvest for n ≤ c and

zero for n > c (exercise 6). Hence, if the Green function without harvesting

is G0(n, n0), the expected time to extinction at n = 0 for a threshold at c is

simply given by

T (n0) =
∫ c

0
G0(n, n0)dn.

In order to find expressions for the harvesting statistics for this model we

first rewrite the expression for the total harvest Y before extinction inserting

y(n) = µ0(n)− µ(n) giving

Y (n0) =
∫ ∞

0
y(n)G(n, n0)dn =

∫ ∞
0

µ0(n)G(n, n0)dn−
∫ ∞

0
µ(n)G(n, n0)dn.

The last integral is, writing T ∗ for the stochastic extinction time

∫ ∞
0

µ(n)G(n, n0)dn = E

(∫ T ∗

0
E(
dN

dt
|N = n)

)
dt = E[N(T ∗)−N(0)] = −n0.

The equation for the total expected yield before extinction then becomes

Y (n0) = n0 +
∫ ∞

0
µ0(n)G(n, n0)dn.

Hence, for threshold harvesting with a threshold at c the total expected yield

before extinction is

Y (n0) = n0 +
∫ c

0
µ0(n)G0(n, n0)dn

and the relevant measure of mean yearly harvest in the period before extinc-

tion is E[y(N)|N0 = n0] = Y (n0)/T (n0).

Proportional threshold harvesting

In practice the population size is usually not known exactly. Then the har-

vesting tactic must be based on the available population estimate, say N̂ . If

the variance of this estimator is large one can intuitively see that threshold

harvesting can perform very badly. Suppose that the estimate one year is

much larger than the real population size. Then N̂ − c is much larger than
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N − c so if we harvest the amount N̂ − c the population will after harvesting

end up far below c which may as a worst case lead to extinction.

Arguing through the binormal approximation of (N̂ ,N) this has lead to the

more conservative approach of only harvesting a proportion q of the difference

N̂ − c when N̂ > c and otherwise no harvesting, so that the yield is

y(N̂) =

 0 for N̂ < c

q(N̂ − c) for N̂ > c

The infinitesimal mean and variance in the diffusion approximation for N is

then

µ(n) = µ0(n)− E[y(N̂)|N = n]

ν(n) = ν0(n) + var[y(N̂)|N = n].

For a given distribution of the estimator N̂ , say f(n̂|n), the above mean and

variance of the yield are given by

E[y(N̂)|N = n] = q
∫ ∞
c

(n̂− c)f(n̂|n)dn̂

and

var[y(N̂)|N = n] = q2
∫ ∞
c

(n̂− c)2f(n̂|n)dn̂− {E[y(N̂ |N = n)]}2.

Writing n̂ = nZ, an unbiased estimator with constant coefficient of variation

requires that Z has distribution independent of n with mean 1. Then, if Z is

approximately normally distributed the mean and variance can be expressed

by the standard normal integral (exercise 7). Similar calculations can be

made for other assumptions on how the variance of the estimator depends

on the population size (exercise 8 and 9).

In practice, the harvesting statistics can now be computed numerically for a

given tactic, that is, a given set of constants (c, q). Finally some numerical

maximization procedure must be used to compute the value of (c, q) that

maximizes for example the mean annual yield.
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5.2 Population viability analysis

5.2.1 Introduction

Natural communities show large variation in species abundance, often ap-

proximately lognormally distributed between species. Hence, many species

are naturally rare at a given site. Human disturbance of natural communi-

ties may therefore have serious effects on a number of species increasing the

probabilities of extinction and reducing the expected time to extinction. The

four major factors threatening species are habitat destruction, overexploita-

tion (fishing, hunting, captured for live animal pet trade), introduced species

and pollution.

The International Union for Conservation of Nature and Natural Resources

(IUCN) develop criteria for classifying species into categories as Critically

Endangered, Endangered and Vulnerable. IUCN uses a number of differ-

ent criteria in this work, such as population size, trends in population size,

fragmentation of habitats, decrease in geographic range and area species

are occupying, that together determine the risk of extinction assigned to a

species. Species at risk of extinction according to these criteria are listed

in the so-called Red List for each country or region of the world which is

updated periodically. In year 2000 23.7% of the mammals and 11.9 % of the

bird species were considered threatened.

Since about 1980, IUCN has included the modern concept of Population Via-

bility Analysis (PVA) in their criteria for classification of species. Population

viability analysis uses stochastic modelling of population dynamics including

concepts like demographic and environmental variances, defining viability

through the probability of extinction within a certain time.

5.2.2 Population Prediction intervals

We have seen in chapter 3 how diffusion theory can be applied to determine

the probability of extinction within a certain time in some models, while
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extensive stochastic simulations would have to be used in other more com-

plex models. The probability of extinction will in any case depend on the

population parameters and it will be very sensitive to the value of some of

these parameters, in particular the population growth rate. Since time series

observation always are only available over short time intervals (even 50 years

is a short time series in the statistical sense, although biologists consider it

to be an extremely long time series), parameter estimates will always be sub-

ject to rather large sampling errors. Because of the strong sensitivity of the

probability of extinction to some of the parameters, this makes the sampling

error in the estimate of the probability of extinction very large. Therefore,

the task of estimating the viability of a species through the probability of

extinction within a certain time is an almost impossible task. Attempts to

find confidence limits for these probabilities has lead some scientist to claim

that it is practically impossible to do a proper population viability analysis.

Another problem with the above approach is that a confidence interval for a

probability of extinction would in practice be hard to interpret for those who

in practice are responsible for the management of populations. In particular,

this will be difficult if the confidence interval is wide, which it almost always

will be.

These problems may be overcome, however, by using the statistical concept of

prediction intervals rather than confidence intervals. In statistics confidence

intervals are used to draw inference about parameters, while prediction in-

tervals are constructed for making statements about the realized values of

stochastic variables that are not yet observed. The most common example

in statistical text books is the solution to the problem of predicting an ob-

servation for some given value of a covariate in a simple linear regression

model using students T-distribution. We have seen an even simpler example

in section 1.5 where we constructed prediction intervals for future popula-

tion sizes in the random walk model with normally distributed increments

also using the T-distribution. This example (and the regression example)

is particularly simple since they give exact solutions that do not depend on
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any nuisance parameters which in this case is the variance of the underlying

normal distribution.

Generally, writing X = (X1, X2, . . . , Xn) for a set of observations with distri-

bution depending on parameters θ, our aim is to construct two functions of

X only, say A(X) and B(X) so that P [A(X) < Y < B(X)] = 1−α, where Y

is the unobserved stochastic variable with distribution depending on θ that

are to be predicted with confidence 1− α.

In more complex models, there is impossible to construct such functions A

and B that makes the coverage 1 − α constant, that is, not depending on

any unknown parameters. Hence, one would have to rely on methods giving

approximately correct coverage. In practice, one can try to make the cover-

age equal to a prescribed value for some value of the unknown parameters

believed to be close to the real ones, that is, for the point estimate of the

parameters. Computing such intervals will usually require rather extensive

stochastic simulations.

5.2.3 Frequentistic population prediction interval

A rather simple way of constructing prediction intervals is to use parametric

bootstrap replicates of the unknown parameters. Having estimated the pa-

rameters in the model we can simulate parametric bootstrap data sets using

the estimated values. For each such set of data a bootstrap-replicate of the

parameters are found by performing exactly the same estimation procedure

as when the estimation was originally done from the data. Then, the pro-

cess can be simulated into the future using the bootstrap-replicates, starting

from the last observation, one simulation of the process as far as we like for

each bootstrap replicate of the parameters. If this is done for example 10000

times we end up with 10000 time series into the future. For each future year

we can then use the quantiles of the empirical distribution of the simulated

population size each year. The lower 5% quantile would the be series number

500 when they are ordered according to population size. Fig.5.3 shows an

example of such intervals. This population is far below its carrying capacity,
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so a model without density regulation is used. The demographic variance

has been estimated from a large number of individual records of number of

offspring and survival and is considered as known in this analysis.

There are different ways of performing the above simulations. In this example

the simulations has been done in such a way that the last observation of each

simulation equals the last observation in the data.

The above method will not give prediction intervals with exactly correct cov-

erage. So, one can go further with these computation and do a large number

of simulations to check what the coverage actually is for given parameter

values (usually the point estimates). Finally the bounds can be adjusted to

give more correct coverage. Such a technique has been applied to produce

the graphs in Fig.5.3.

5.2.4 Bayesian population prediction intervals

It is often conceptually and practically simpler to use the Bayesian approach

to derive prediction intervals. Although this approach do not lead to correct

coverage for a given set of parameters, which is a major point of the frequen-

tistic approach, there are advantages that the frequentistic approach can not

compete with. Apart from the simplicity, the Bayesian approach enables us

to use prior information about parameters obtained from analysis of the same

or closely related species. If one do not want to use such information, or it is

not available, one usually use a so-called non-informative prior distribution

of the parameters. Another great advantage is that the appoach can easily

be generalized to include sampling errors in the observations.

Let π(θ) denote the prior distribution of the parameters and let X be the

data. Our model then describes the distribution f(x|θ) of X. The Bayesian

approach is simply to evaluate the posterior distribution of θ which is its

distribution conditioned on the observed value x of X, which is

p(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

.
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Figure 5.3: Population prediction intervals for the Barn Swallow at Kraghede,

(A) accounting for demographic and environmental stochasticity and uncer-

tainty in the parameters, (B) assuming no uncertainty in the parameters,

and (C) assuming no demographic stochasticity so that all stochasticity is

estimated as environmental stochasticity.
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If we now are able to simulate observations of θ from the posterior distribu-

tion we can simply find the posterior distribution of future population sizes

by simulating the process for each simulation of the parameters as we did in

the frequentistic approach. Finally, prediction intervals comes out using the

ordered population sizes as before.

If there are sampling errors, the population sizes X cannot be observed, but

only some estimates, say Y with distribution say h(y|x,θ). Notice that θ

now may have components expressing distribution of sampling errors. In this

case we need the posterior distribution of (X,θ) which is

q(x,θ|y) =
h(y|x,θ)f(x|θ)π(θ)∫

h(y|x,θ)f(x|θ)π(θ)dxdθ
.

5.2.5 A simple example of Bayesian population predic-

tion intervals

As an illustration we consider the linear model on the log scale defined by

assuming that Xt+1 conditioned on Xt is normally distributed with

E(Xt+1|Xt = x) = α + βx

and constant variance var(Xt+1|Xt = x) = σ2. We also assume that the log

population sizes at n + 1 subsequent years X0, X1, . . . , Xn are known. If we

are unsure about the process actually starting at the stable age distribution

we should condition on the first observation x0. The joint distribution of

the observations x = (X1,X2 . . . ,Xn) given the parameter values and the

observed value x0 of X0 are then

f(x|α, β, τ2,x0) = Πn
i=1

τ√
2π

e−(xi−α−βxi−1)2τ2/2

where we have introduced the parameter τ 2 = 1/σ2 often called the precision

in Bayesian theory.

If nothing is known about the parameters apriori, one often use a so-called

non-informative prior distribution. Accordingly we assume that α and β
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are distributed uniformly on the real axes, which must be considered as a

limiting case of the of a uniform distribution ranging from −c to c as c

approaches infinity. For the precision one often use the distribution formally

proportional to 1/τ 2 which can be considered as the limiting case of the

gamma distribution when the shape parameter as well as the scale parameter

approaches zero. Multiplying with these distribution, that is, multiplying by

1/τ 2, we find the joint distribution of (x, α, β, τ2) up to a constant factor that

can be determined by integration. Further, the joint distribution of (α, β, τ 2)

conditioned on the observations is also proportional to the same expression.

The goal of this Bayesian approach is to simulate observations from this

posterior distribution of the unknown parameters conditioned on the obser-

vations. One way of doing this is to use the so-called Gibbs sampler, for

which the main idea is the following: if the parameters are generated from

the wanted distribution we can take out a single component and replace it by

a new simulation of this from the conditional distribution of the component

given the others. Repeating this procedure subsequently for all parameters

(components) we obtain a new simulation of the whole set of parameters.

One problem with this approach is that we do not know how to start the

simulations from the correct distribution. However, under rather general

conditions the procedure will converge to the correct distribution starting

from some reasonable parameter values. The process then produces a Markov

chain of parameter values with stationary distribution being the one we want

to simulate from.

In the simple example we consider here we see that the distribution of α

conditioned on the observations and the other parameters has the form of

a normal distribution, being the exponential function of a second degree

polynomial in α. The same is the case for β. The distribution of τ 2, on the

other hand, is a gamma distribution.

Using a technique given in exercise 10 we find (exercise 10) that the mean

and variance of the appropriate conditional distribution of α is
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Eα =
1

n

n∑
i=1

(xi − βxi−1)

and

var(α) = 1/(nτ 2).

Using the same approach we also find (exercise 10) that β is normal with

Eβ =
n∑
i=1

xi−1(xi − α)(
n∑
i=1

x2
i−1)−1

and

var(β) = (τ 2
n∑
i=1

x2
i−1)−1.

Finally, the shape parameter in the gamma distribution of τ 2 is simply n/2

while the scale parameter is
∑n
i=1(xi − α− βxi−1)2/2 (exercise 11).

Fig.5.5 shows the Markov chains obtained for the three unknown parameters

using the Gibbs sampler as described above. Finally we find the prediction

intervals by simulating the time series starting from the last observation and

using a sequence of simulated values from the Markov chain as described

above. Fig.5.5 shows predictions from the above model using X = 0 (n = 1)

as extinction barrier.

MCMC-methods can be applied to very complex models. However, using

these in practice require a course in modern statistical methods. Statistical

software is available for performing the simulations for a number of different

models.

5.3 Genetic drift

5.3.1 A two-dimensional diffusion model

The theory on demographic and environmental stochasticity, diffusion, and

age-structured population dynamics may be used to analyze genetic drift
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of neutral genes, that is, to study the temporal changes in gene frequen-

cies in fluctuating populations. This analysis, however, require use of two-

dimensional diffusions.

Diffusions in two dimensions are defined by the infinitesimal mean and vari-

ance of each component, defined as in the one-dimensional case, but requires

also an infinitesimal covariance. For a diffusion (Xt, Yt) we write µX(x) and

νX(x) for the infinitesimal mean and variance of Xt and similarly for Yt. The

infinitesimal covariance is defined as

c(x, y) = E(dXdY )/dt.

As in the one dimensional case a transformation into another two-dimensional

variable will also lead to a diffusion and the infinitesimal moments of this can

be derived by general formulas. Here, we shall only consider the particular

transformation

N = X + Y

P = X/(X + Y )

so we restrict the presentation to this transformation and are in particular

interested in the process P . The infinitesimal change in P is given by

dP =
X(1 + dX/X)

N(1 + dN/N
− X

N
=
X

N
(1 + dX/X)(1− dN/N + (dN/N)2− . . .− 1)

Since diffusions are determined by the first two moments only we can ignore

higher order moments giving, inserting X = NP and Y = N(1− p)

dP = dX
(1− P )

NP
− dY 1

N
+ dX2 (1− 1/P )

N2
+ dY 2 1

N2
− dXdY (2− 1/P )

N2

and

EdP 2 = P 2(
dX

X
− dN

N
)2 =

1

N2
[(1− P )dX − PdY ]2.
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We shall in particular considerX and Y as two sub-populations with perfectly

correlated environmental noise (since they are in the same environment),

the same demographic variance and the same exponential growth. Then

µX(x) = rx, µY (y) = ry, νx(x) = σ2
dx + σ2

ex
2, νY (y) = σ2

dy + σ2
ey

2 and

c(x, y) = σ2
exy. This leads to (exercise 12)

µN(n, p)) = rn

and

νN(n, p)) = σ2
dn+ σ2

en
2.

Using the above expression for dP and dP 2 we find after some algebra (ex-

ercise 13) that

µP (n, p) = 0

and (exercise 14)

νP (n, p) =
σ2
dp(1− p)

n
.

One can also show (exercise 15) that the infinitesimal covariance for the

process (N,P ) is zero.

5.3.2 Effective population size

Genetic drift is the change in gene frequency of neutral genes due to ran-

domness in the process that determines how genes are transmitted through

generations. The term neutral genes is used for genes that are equivalent

in their effect on vital rates and the stochasticity in vital rates. So, for two

neutral genes a and A there is no natural selection of any of them and the

change in their frequency in a population is due to purely random effects

only.

Genetic drift of a gene will depend on the frequency of the gene in the

population. In order to compare drift of genes with different frequencies,
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however, the concept of effective population size is used, which, although it

is independent of gene frequency, contains all information about the genetic

drift of any neutral gene in the population. Effective population size is defined

by a comparison to a simple one sex model with non-overlapping generations

and constant population size where the genes of the next generation are

selected by simple binomial random sampling.

Consider a diploid population of N individuals and two neutral genes a and A

at a given locus. If there are X genes of type A in the population we say that

the gene frequency of A is P = X/(2N) since there are 2N genes altogether at

this locus. Now, let the next generation be formed by randomly selecting 2N

genes to form N individuals from an infinitely large gene pool with a fraction

P of genes of type A which means that each individual has contributed

equally to the gene pool. The number of genes A in the next generation, say

X + ∆X is then binomially distributed with parameters (2N,P ) so that

var(∆P |P = p) = var(
X + ∆X

2N
|P = p) =

p(1− p)
2N

.

This model is now used as a yardstick for comparison with other more com-

plex models. Quite generally, the variance of ∆P over a time span of one

generation will be proportional to p(1− p), say

var(∆P |P = p) = cp(1− p) =
p(1− p)

2Ne

which is then the definition of the effective population size Ne. Notice that

Ne determines the drift (the variance in ∆P ) for any neutral gene regardless

its gene frequency.

To determine the effective population size of populations is therefore ex-

tremely important in analyzing changes in gene frequency, reduction of het-

erozygosity and extinction of genes, all being important components of con-

servation biology. Quite often Ne may be much smaller than the population

size N , which means that the drift will be much larger than the drift in the

yardstick model for equal population sizes. We shall now look at some simple

examples showing how different properties of vital rates in populations affect

the genetic drift.
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5.3.3 Haploid model with age-structure

We consider first a haploid organism with two neutral genes a and A. In a

haploid model individuals has only one gene at a given locus and transmit this

gene to their offspring. The reference genetic drift is accordingly p(1− p)/n.

Since individuals now just produce copies of themselves the two genotypes

can be considered as two separate populations, X and Y individuals of type A

and a rerspectively. If there is no density-regulation these populations do not

interact, although they are dependent through the fact that they are in the

same environment so that the infinitesimal covariance is σ2
exy. We have seen

that even a complex age-structured model may be accurately approximated

by a diffusion when there is no density regulation. This diffusion process will

be exactly the two-dimensional process we have considered earlier in this

chapter. Hence, we see immediately that the genetic drift during one year is

determined by

var(∆P |P = p,N = n) = σ2
dp(1− p)/n.

The variance of ∆P during one generation T is then approximately σ2
dTp(1−

p)/n = p(1 − p)/Ne so that the effective population size for a population of

size N is simply

Ne =
N

σ2
dT

.

Although this result may seem very simple, notice that σ2
d and the generation

time T are more complex functions of the properties of the vital rates in the

age-structured model (see chapter 4).

This simple result is interesting in two ways. First, we see that the en-

vironmental stochasticty has absolutely no effect on the genetic drift for a

given population size. Over longer time intervals, however, the drift is af-

fected by the environmental stochasticity through its effect on the process

N . Secondly, we see that the drift during one year is determined by the

demographic variance alone. So this is an important example of how the two
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forms of stochasticity, environmental and demographic, have quite different

effects on populations and must be considered separately.

5.3.4 Diploid two-sex model with overlapping genera-

tions

When analyzing more complex models we shall do the calculations assuming

that the gene A is rare so that P is small and P (1−P ) ≈ P . The advantage of

this approach is that an individual with this rare gene always (approximately)

is a heterozygote that mate with individuals that do not have this gene, a

fact that simplifies the analysis a lot. It is easy to show that the effective

population size derived from a small gene frequency actually is valid for any

gene frequency (exercise 20). We consider a two-sex model using m and f as

subscripts referring to males and females respectively.

We now assume that all individuals of the same sex has the same properties

writing bf and bm for the mean number of offspring of a single female and male

that survive to enter the adult population, sf and sm for the adult survival

rates, and q for the probability that a newborn individual is a female. So,

this is a population with individuals of different ages, but since all individuals

of the same sex has the same properties we just call this a population with

overlapping generations rather than an age-structured population.

Let Zt = (Xt, Yt)
′ be the number of adult females and males respectively in

the subpopulation with the rare gene, where ′ denotes matrix transposition

as before. Then, if there is no density regulation the expected dynamics are

given by

EZt+1 = MEZt

where the projection matrix is (exercise 16)

M =

 1
2
qbf + sf

1
2
qbm

1
2
(1− q)bf 1

2
(1− q)bm + sm


The factors 1

2
occurs due to the fact that a mother or father with the given

gene transmit the gene to their offspring with probability 1
2

because the gene
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is rare and all individuals bearing it therefore are heterozygotes that mate

with an individual not bearing the gene.

Let Z = X + Y be the number of individuals of type (aA), both sexes

included, and write W = 2N − Z for the number of homozygotes with

genotype (aa). The gene frequency if A is P = Z/(Z + W ). As before,

a common environment acting on the processes Z and W will have no ef-

fect on the process P for a given N , and neutrality ensures also here that

µP (p, n) = 0. Using the previously derived result (with slightly different

symbols) EdP 2 = 1
(2N)2

[(1−P )dZ −PdW ]2 and remembering that p ≈ 0 we

find

νP (p, n) ≈ σ2
dgp/(2N)

where σ2
dg is the demographic variance of the process Z, which is affected

by individual variation in survival and reproduction as well as the binomial

sampling of genes from parents to offspring. So, for a small value of p we see

that

Ne ≈
N

σ2
dgT

which must hold in general since the effective population size is independent

of gene frequency. So, the effective population size is determined as soon

as we know the demographic variance σ2
dg of the process Z and the mean

generation time.

The first step is to analyse the expected dynamics determined by the matrix

M . Let u = (u1, u2)T and v = (v1, v2) denote the left and right eigenvectors

of M associated with the dominant eigenvalue λ defined by Mu = λu and

vM = λv. If u is scaled so that the u1+u2 = 1, it is the stable sex distribution

corresponding to the deterministic model. Since the males and females must

have the same expected reproduction (each individual is produced by one

male and one female), we have u1bf = u2bm giving u1 = bm/(bf + bm) and

u2 = bf/(bf + bm). From the equation Mu = λu we find (exercise 17)

that the dominant eigenvalue λ is qbf + sf as well as (1 − q)bm + sm. This
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relates the mean birth rates for males and females through the relation bm =

(qbf +sf −sm)/(1−q). The right eigenvector v, scaled so that the sum of its

components is one, turns out to be (1− q, q) (exercise 18). The sensitivities

of this model are ∂λ/∂Mij = viuj/(vu).

In order to find the demographic variance we must consider the stochastic dy-

namics as we did in chapter 4. Writing G for the stochastic matrix operating

a given year so that Zt+1 = GZt, one can show that the expectation of G is M

and that the non-zero variances and covariances cov(Gij, Gkl) of its elements

can be expressed by some constants aij,kl defined by ai1,j1 = Xtcov(Gi1, Gj1)

and ai2,j2 = Ytcov(Gi2, Gj2). These coefficients are

a11,11 =
1

4
bfq(2− q) +

1

4
q2σ2

f + sf (1− sf ) + qcf

a21,21 =
1

4
bf (1− q)(1 + q) +

1

4
(1− q)2σ2

f

a11,21 = a21,11 = −1

4
bfq(1− q) +

1

4
q(1− q)σ2

f +
1

2
(1− q)cf

a12,12 =
1

4
bmq(2− q) +

1

4
q2σ2

m

a22,22 =
1

4
bm(1− q)(1 + q) +

1

4
(1− q)2σ2

m + sm(1− sm) + (1− q)cm

a12,22 = a22,12 = −1

4
bmq(1− q) +

1

4
q(1− q)σ2

m +
1

2
qcm

where σ2
f is the variance of the number of offspring produced by females, cf

is the covariance between a female’s number of offspring and the indicator of

her survival, and similar for males.

We show how to derive the first of these coefficient and leave the others as

an exercise (exercise 19). In order to find cov(G11, G11) = var(G11) we first

consider a single female of type (a,A) producing Bf offspring surviving to

the next sensus and having survival indicator If which is one if she survives

herself and otherwise zero. First conditioning on (Bf , If ) her Bf offspring

fall independently into three different categories. They have genotype (A,A)

with probability one half since she mate with a male of type (A,A), and
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they are female of type (a,A) with probability q/2 and males of type (a,A)

with probability (1−q)/2. Writing W for her contribution of females of type

(a,A), we consequently have

E(W |Bf , If ) =
1

2
qBf + If

and

var(W |Bf , IF ) = Bf
1

2
q(1− 1

2
q) = Bf

1

4
q(2− q).

Using the general formulas for the unconditional mean and variance of a

stochastic variable we then find

EW = EE(W |Bf , If ) =
1

2
qbf + sf

and

var(W ) = Evar(W |Bf , If )+varE(W |Bf , If ) =
1

4
q2σ2

f+sf (1−sf )+qcf+
1

4
bfq(2−q).

The element G11 is the mean value of Xf such independent contributions W

so that var(G11) = X−1
f var(W ) leading to the above expression for a11,11.

Using the approximation for the demographic variance derived in chapter 4

we find that the demographic variance of the process Z is approximately

σ2
dg = λ−2

∑
ijk

u−1
j

∂λ

∂Mij

∂λ

∂Mkj

aij,kj = (λvu)−2
∑
ijk

ujvivkaij,kj (5.1)

where all three indices ijk run over 1 and 2. The mean generation time for

this model is T = (Tf + Tm)/2 = [λ/(λ− sf ) + λ/(λ− sm)]/2 = λ/bf + λ/bf .

Although these results may seem complicated, it is straightforward to write a

simple computer program that can be used to investigate how each parameter

determining the dynamics of Z also affects the effective population size and

hence the genetic drift of this population.

The same kind of analysis can be performed on a general age-structured

model although more algebra is required to find the results.
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5.4 Exercises

1. Find the optimal harvesting tactic for then discrete deterministic theta-

logistic model ∆N = r1N [1 − (N θ − 1)/(Kθ − 1], and investigate how the

type of density-regulation (defined by θ) affects the solution.

2. Consider a population with constant environmental and demographic

variance which is far below its carrying capacity so that µ0(n) = r̄n. Find

the lower population size n∗ that gives a positive stochastic growth rate

when this population is harvested at a constant rate y. Make a graph of n∗

as function of the harvest y when σ2
d = 1, σ2

e = 0.01 and r̄ = 0.02.

3. For the logistic deterministic model ∆N = rN(1 − N/K) show that the

maximum harvest Y = rK/4 is obtained for harvesting rate r/2 (that is,

harvesting reduces the growth rate ∆N by Nr/2).

4. Solve the deterministic problem in exercise 3 for the Gompertz model

∆N = r1N(1− lnN/ lnK).

5. Show that the maximum mean harvest in the diffusion approximation for

the Gompertz model with no demographic stochasticity and environmental

variance σ2
e is EYmax = K1−σ2

e/(4r1)r1e
−1/ lnK.

6. Show that the Green function for threshold harvesting with threshold c

equals the Green function for the process with no harvesting for n ≤ c and

zero for n > c.

7. Let the estimate of the population size be of the form nZ, there Z is

normally distributed with mean 1 and variance σ2. Find the mean and

variance of the yield for proportional threshold harvesting expressed by the

standard normal integral (cumulative standard normal distribution).

8. Solve the problem in exercise 7 when var(Z) = σ2/n so that the variance

of N̂ is proportional to n.

9. Solve the problem in exercise 7 when var(Z) = σ2h(n).

10. Write f(z;µ, σ2) for the normal density with mean µ and variance σ2.

Show that ∂ ln f/∂z|z=0 = µ/σ2 and ∂2 ln f/∂z2 = −1/σ2. Use these results

to find the mean and variance of α and β in the Bayesian approach to the

linear normal model when conditioned on the observations and the other
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parameters.

11. In the same example find the parameters of the gamma distribution of

τ 2 when conditioned on the observation and the other parameters.

12. Using the infinitesimal moments of the two-dimensional diffusion (X, Y )

defined in the text show thatN = X+Y has infinitesimal mean µN(n, p) = rn

and infinitesimal variance νN(n, p) = σ2
dn+ σ2

en
2.

13. For the model used in exercise 12, use the expression for dP given in the

text to show that P has zero infinitesimal mean.

14. For the model used in exercise 12, use the expression for dP 2 given in the

text to show that the infinitesimal variance of P is νp(n, p) = σ2
dp(1− p)/n.

15. For the model used in exercise 12, use the expression for dP given in the

text to show that the infinitesimal covariance for the process (N,P ) is zero.

16. Write out the details showing that the two-sex diploid model with over-

lapping generations has the projection matrix M for the expected dynamics

given in the text.

17. Show that the dominant eigenvalue of M is λ = qbf +sf = (1−q)bm+sm.

18. Show that the scaled right eigenvector v of M , scaled so that the sum of

its components is one, is (1− q, q).
19. Derive all expectations, variances and covariances of the elements of the

stochastic matrix G given by the coefficients aij,kl defined in the text.

20. Let the neutral genes at a given locus be theoretically subdivided into a

large number m of differently labelled alleles A1, A2, . . . , Am with the same

frequency Pi = 1/m, i = 1, 2 . . .m. Define a new allele B consisting of k of

the A′is which then have frequency Q = k/m. We have shown in the text

that var(∆Pi) ≈ Piσ
2
dg/(2N). Use the fact that var(

∑m
i=1 ∆Pi) = 0 (why

is it so?) to find cov(∆Pi,∆Pj) and finally use this result to show that

var(∆Q) ≈ σ2
dgQ(1−Q)/(2N).



Chapter 6

Spatial models

6.1 Introduction

Until now we have have considered individuals to be members of a popula-

tion without considering their actual position. Such models can be realistic

in many cases when individuals are located within a well defined area, for ex-

ample an island or some other suitable habitat that is small enough for each

individual to have the same relation to any other individual of that popula-

tion. However, we have also assumed that the populations are closed, that is,

there is no interaction with other populations through migration. Although

some populations may be rather isolated, this is generally a very strong and

often unrealistic assumption, and in many cases completely wrong. Many

quite different species, for example fish and insects, migrate a lot, and may

not have a well defined home range. Modeling such populations is a difficult

task for several reasons. Rather than dealing with a single number of indi-

viduals, we will need to keep track of the individuals’ position in space at

different times. Even in the simplest case of some few interacting populations,

this is mathematically a big step away from the simple one-dimensional single

population model. The challenge of obtaining relevant statistical information

about populations spread out in space is also enormous. Mark recapture ex-

periments is an important component of this research, enabling observations

177



178 CHAPTER 6. SPATIAL MODELS

of the same individual at different times giving partial information about its

migration.

One question of great interest is the synchrony in population fluctuations.

Often one find that population density at rather close distances are spa-

tially correlated, that is, if one density is high at a given point of time, the

other density is also expected to be large. This synchrony usually decreases

with increasing distance, but synchrony in population fluctuations can also

be observed over very large distances. For insects, the synchrony usually

disappears already at rather small distances such as some few kilometers,

while fish in the ocean may show population synchrony even at thousands of

kilometers. Population synchrony can be generated in many different ways.

The simplest explanation is that the habitat quality for a species may be

distributed with some patchiness in space and that population densities ac-

cordingly are distributed spatially according to quality. But there are also

many other possible explanations. The stochastic noise acting at two loca-

tions may be positively correlated due to spatial correlation in the physical

and biological environments collected in what we consider as noise in the

models. Further, migration between locations, especially between locations

at close distances, must have some impact on the synchrony.

We have seen that most populations are density-regulated. This phenomena

is also more complex when it comes to spatially distributed populations as

the competition between two individuals must be related to their physical

distance. We shall also see that density-regulation also affects population

synchrony. If the density-regulation is small, migration may have a large ef-

fect on population synchrony even at distances much larger than typical mi-

gration distances, while strong local density-regulation seems to break down

the spatial correlations in density.

In 1953, the statistician Moran published a paper explaining that spatial

correlation in noise alone could synchonize populations. Actually, if two

local populations can be described as simple linear time series with the equal

parameters determining the density-regulation, then the correlation between
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the densities (or log densities) will be exactly the same as the correlation

between the noise terms. We have seen that such models often can be a

realistic description if we work on the log scale and the population size is large

enough to ignore demographic stochasticity (see chapter II, theta-logistic

model with θ = 0, and exercise 5). The Moran effect may be considered

as a kind of null model in spatial population ecology as much attention has

been given to estimation and explanation of deviations from the correlations

explained by Moran.

Spatial analysis of ecological data was initiated by investigations of statisti-

cal patterns in individual counts, such as recordings of number of individuals

in quadrates. Most well known are the so-called Taylor’s scaling laws, ex-

pressing that the relation between the mean and variance in counts are linear

on the log scale. Empirically this has been shown to be a good approxima-

tion for different ways of changing the mean, such as considering repeated

counts through time (years) or studying the effect of increasing sampling

size (quadrate size). The law has also been shown to hold approximately for

between species comparisons for different taxonomic groups of species. How-

ever, theoretical models indicate that these laws are mainly rather rough

approximations to the true relationships which has slopes that may vary

with the mean, but usually stays between 1 and 2 in a double logarithmic

plot.

In chapter III we have studied extinctions and quasi-extinctions of single

populations. The concept of extinction, however, is also more complicated

for populations spread over large areas. It will now be more appropriate

to analyze the probability of local extinction or quasi-extinction since sub-

populations that apparently have gone extinct may be recolonized through

migration provided that the total population spread out in space has not

gone extinct.
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6.2 The meta-population approach

Many populations may naturally be considered as a set of discrete sub-

populations. These local populations may be dealt with as we until now have

dealt with single populations. However, there are two important things that

may connect the dynamics of the populations. Usually, populations are not

completely isolated and there may be some migration of individuals between

them. Secondly, the stochastic terms in the model for each sub-population

may not be independent. Populations located nearby to each other are likely

to have highly correlated noise since the physical and biological stochastic

effects that act on them are likely to be similar. These two effects make

the mathematical analysis of such a system, called a meta-population, rather

intractable.

However, the meta-population approach has the great advantage that it is

conceptually simple, and can easily be studied by extensive stochastic sim-

ulations. Although this is a very useful approach with many advantages, it

has the general disadvantage of simulation models that it may be hard to

find generally valid conclusions due to the large number of parameters that

can possibly be varied in such simulations. Nevertheless, simulation studies

of properties of meta-population models has been proved to be a very useful

tool in the exploration of spatial population dynamics.

Here we shall only analyze the stochastic version of the classical meta-

population model that makes some simplifying assumptions. We have seen in

chapter 3.11.2 that the time to extinction of a population fluctuating around

an equilibrium often can be approximated by the exponential distribution,

which is equivalent to assuming the the probability that the population will

go extinct during the next small time interval ∆t is constant equal to, say

e∆t. We assume that the extinction rate e is the same for all colonized

sub-populations, or islands. Further, we make the (strong) assumption that

extinctions at different locations are independent events. This would be

correct if the noise terms were independent and there was no connections

through migration.
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Provided that all other islands are empty we assume that a colonized island

colonizes one of the others the next small time interval ∆t with constant prob-

ability c∆t. If the meta-population then consists of n population altogether

and x of these are colonized at time t, the probability that a colonization

occur is then cx(1 − x/n)∆t. This is because there are x islands that may

colonize the others, but only a fraction (1−x/n) of islands that actually can

be colonized. Accordingly a transition from x to x+ 1 in the next infinitesi-

mal interval dt occurs with probability αxdt = cx(1−x/n)dt, from x to x−1

with probability βxdt = exdt while the number of colonized islands remains

unchanged with probability 1−[αx+βx]dt. Writing Xt for the stochastic num-

ber of occupied islands at time t we see that Xt is a birth- and death-process

with the above transition probabilities. Writing pt(x) = P (Xt = x|X0 = x0)

we have accordingly

pt+dt(x) = pt(x)[1− (αx + βx)dt] + pt(x+ 1)βx+1dt+ pt(x− 1)αx−1dt.

Replacing dt by small discrete steps ∆t this equation can be used to calculate

pt(x) recursively. In particular it is interesting to find the probability pt(0)

that the meta-population has gone extinct within time t.

Let Sx denote the expected first passage time from state x to x − 1. The

expected time the process stays in state x before leaving x for the first time is

1/(αx +βx). When a transition occurs, the next state is x+ 1 and x−1 with

probability αx/(αx+βx) and βx/(αx+βx), respectively, giving the recurrence

relation

Sx =
1

αx + βx
+

αx
αx + βx

(Sx+1 + Sx) +
βx

αx + βx
· 0

which, after solving for Sx gives

Sx =
1

βx
+
αx
βx
Sx+1.

All Sx can then be calculated subsequently, downwards from n to 1, with

initial condition Sn = 1/βn. Finally, the expected time to extinction of the
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meta-population with initial state x0 is T =
∑x0
x=1 Sx. If the expected time to

extinction is large, it will be approximately independent of x0 and the time

to extinction will be approximately exponentially distributed with parameter

1/T in accordance with our derivation in 3.11.1. Hence, the probability that

the whole meta-population goes extinct before time t when it initially is at

an intermediate state is approximately exp(−t/T ).

Even if extinction is certain for this model for a finite n the process may

fluctuate a long time before extinction occur and hence be what we have

called a quasi-stationary process. As the expected change in Xt is negative

when Xt > x∗ = (1− e/c)n and positive if Xt < x∗, the process will tend to

fluctuate around x∗ provided that e < c, that is, the local extinction rate is

smaller than the colonization rate. If e > c there is no such quasi-stationary

equilibrium point.

We can investigate this in more detail by using the discrete analog of the

Green function G(x, x0). Now we let this express the expected time the

process spends in state x before it goes extinct when it initially at time

t = 0 is in state x0. The expected time spent in x during time interval

(t, t+ dt) is pt(x, x0)dt, so due to the fact that expectations are additive we

must have the relation G(x, x0) =
∫∞

0 pt(x, x0)dt. Hence, when solving the

equation for pt(x, x0) numerically, we may in the same calculations add the

contributions pt(x, x0)∆t to find G(x, x0). The quasi-stationary distribution

is then p(x, x0) = G(x, x0)/T (x0). Examples are shown in Fig.6.1.

Fig.6.2 shows a simulation of a process from time t = 1000 until it goes

extinct at t ≈ 1650 years.

6.3 The Moran effect

6.3.1 Correlated time series

We have seen in chapter II that the theta-logistic model with θ = 0 (Gom-

pertz type of density regulation) leads to linear models on the log scale. Fur-
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Figure 6.1: The quasi-stationary distribution of number of occupied islands

for parameter values c = 0.06 and e = 0.04 for three different values of meta-

population size n. The time to extinction is approximately 3900 for n = 20,

26000 for n = 50 and 600000 for n = 100. The corresponding values for n∗

are 6.7, 16.7 and 33.3.
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Figure 6.2: Simulation of a meta-population from time t = 1000 until it goes

extinct at about 1650 years. Parameters are c = 0.06, e = 0.04, and n = 20.

The dotted line shows the quasi-stationary equilibrium point x∗ ≈ 6.7.
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ther, if the populations are large, the demographic variance can be ignored,

and the noise term on the log scale will then have approximately constant

variance which actually is the environmental variance σ2
e . Writing X = lnN

for the log population size we then have

Xt+1 = α1 + βXt + εt

where var(εt) = σ2
e1 is the environmental variance and the carrying capacity

on the log scale is k1 = α1/(1− β). Alternatively, we can write the model as

∆X = α1 − γX + ε, where γ = 1 − β is the strength of density-regulation

according to the definition made in chapter II. This is a stationary time se-

ries when |β| < 1. If the noise term is normally distributed and there are

no temporal autocorrelations in the noise, the stationary distribution is the

normal distribution with mean k1 and variance σ2
e1/(1−β2) = σ2

e1/(2γ−γ2).

Notice that if γ is much smaller than one, then the stationary distribution has

variance approximately σ2
e1/(2γ) which is the same as for the analogue con-

tinuous model (see 3.8.4). Now, Xt+1 can be written as a linear combination

of previous noise terms (exercise 3)

Xt+1 = k1 +
∞∑
u=0

βuεt−u.

Let the fluctuations at another location be given by the same model, possibly

with a different log carrying capacity k2, but with the same strength of

density-regulation, and noise terms δt with variance σ2
e2, giving

Yt+1 = k2 +
∞∑
u=0

βuδt−u.

From these assumptions it follows (exercise 4) that if corr(εt, δt) = ρ then

the stationary correlation between the log population sizes corr(Xt+1, Yt+1)

also equals ρ. This is what is known as the Moran effect.

The same result also holds for higher order autoregressive models because

the state for such models can be written as linear combinations of the noise

terms. Hence, provided that the autoregressive coefficients are the same at



186 CHAPTER 6. SPATIAL MODELS

the two locations, the correlation between the log population sizes will equal

the spatial correlation of the noise terms. As this holds for two populations,

it also holds for each correlation between a set of sub-populations as long as

there is no migration between them.

6.3.2 Correlation in linear models in continuous time

The Ornstein Uhlenbeck process

In 3.7 we used the Ornstein-Uhlenbeck process as an approximation to the

dynamics of log population size Xt = lnNt. The complete solution for this

process was given in 3.8.4. Now consider two islands with log population

size Xt and Yt, and dynamics given by the diffusions with means α1 − xβ

and α2 − yβ and variances σ2
1 and σ2

2, respectively. Then, Xt+dt = Xt +

(α1 − βXt) + σ1dB1(t) and similarly for Yt+dt. Writing C for the stationary

covariance between Xt and Yt, which can be put equal to cov(Xt+dt, Yt+dt),

we obtain

C = (1− βdt)2C + σ1σ2ρedt

where ρe = E[dB1(t)dB2(t)]/dt is the environmental correlation. Omitting

second order terms in the limit we then find C = σ1σ2ρe/(2β). Using the

fact that var(Xt) = σ2
1/(2β) and var(Yt) = σ2

2/(2β) we see that the Moran

effect also holds for this model as corr(Xt, Yt) = ρ2
e.

The corresponding models for the population sizes Nx and Ny are non-linear,

with the Gompertz type of density-regulation. Using well known properties

of the bivariate normal distribution for (Xt, Yt) wee find (exercise 5) that

corr(Nx, Ny) =
eσ1σ2ρe − 1√

(eσ
2
1 − 1)(eσ

2
2 − 1)

The absolute value of this correlation is always smaller than the absolute

value of the environmental correlation ρe (exercise 6). However, we see from

Fig.6.3 that the correlation between population sizes stay very close to the

correlation between the log of population sizes, which is the environmental

correlation, even if the environmental variances are very large (σ1σ2 = 1).
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Figure 6.3: The correlation between population sizes corr(Nx, Ny) plotted

as function of σ1σ2 when σ2 = 2σ1. The values for σ1σ2 = 0 is exactly the

environmental correlation ρe.
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6.3.3 Correlation in non-linear models in continuous

time

Correlation and measurement scale

We have seen in the previous section that the correlation depends on the

scale at which we measure ’population size’. The non-linear Gomperz type

of model could be linearized by the log transformation, X = lnN , leading

to the linear Ornstein-Uhlenbeck process for which the Moran effect holds.

However, for the non-linear process describing the fluctuations in the popu-

lation size N , a positive correlation in the noise will lead to a positive but

smaller correlation between the population sizes. So, as the Moran effect

seems to dependent on our choice of measurement scale, the above example

indicates that we should look for the Moran effect using a measurement scale

that makes the process as close to linear as possible. Other measurement

scales are then likely to give smaller correlations. We could even say, as a

definition, that the Moran effect holds for N in the Gompertz type of model

because the correlation between population sizes on a suitable scale (here the

log scale) equals the environmental correlation.

Linearizing the theta-logistic model

We now consider the diffusion with infinitesimal mean rn[1−(nθ−1)/(Kθ−1)]

and and (environmental) variance σ2, that is, the theta-logistic model with

population size large enough for the demographic variance to be ignored so

that σ2 is the environmental variance. For this model of population fluctua-

tions we now introduce the transformation

X = g(N) =
1−N−θ

θ

and use the limiting form X = lnN for θ = 0. Hence, for θ = 0 this is exactly

the Gomperz model and the transformation leads to the linear OU-process

for X in that case. Using the transformation formulas for diffusions dealt

with in chapter 3.5, we find (exercise 7 ) that the infinitesimal mean and



6.3. THE MORAN EFFECT 189

variance for X can be written as µ(x) = a − bx and ν(x) = (1 − θx)2σ2,

where a = r − (θ + 1)σ2/2 and b = r/g(K)− θ(θ + 1)σ2/2.

In order to find the stationary correlation between two populations described

by this model we first need to write the models as stochastic differential

equations (see 3.14). However, the simple example we dealt with in 3.14 used

a constant infinitesimal variance so that the two different ways of writing

up the stochastic differential equation from the diffusion were equivalent.

Here we use the approach corresponding to so-called Stratonovich integration,

an approach that ensures that the diffusions and the stochastic differential

equations are both stationary for the same set of parameters. The general

form of the equation is then

dXt = [µ(Xt)−
1

4
ν ′(Xt)]dt+

√
ν(Xt)dB(t)

where B(t) is a standard Brownian motion as before. This stochastic differ-

ential equation for the transformed theta-logistic model then takes the form

(exercise 8)

dXt = (α− βXt) + (1− θXt)σdB(t),

where α = r − σ2/2 and β = r/g(K)− θσ2/2. This linearized theta-logistic

model can now be used to study deviations from the Moran effect.

Correlations in the linearized model

Now consider two island which both can be described by the above theta-

logistic model, with parameters and variables indexed 1 and 2, and with

environmental correlation ρe defined by E[dB1(t)dB2(t)] = ρedt. The solution

is found by requiring that the covariance at stationarity c12 = cov(X1, X2) =

cov(X1 + dX1, X2 + dX2). Writing out these covariances and omitting terms

of order (dt)2, we find, utilizing that dB1 and dB2 are independent of X1 and

X2, that

cov(X1 + dX1, X2 + dX2) = [1− (β1 + β2)dt]cov(X1, X2) + ω (6.1)

where
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ω = σ1σ2cov[(1−X1θ1)dB1, (1−X2θ2)dB2]. (6.2)

Collecting all terms in ω we find (exercise 9)

ω = σ1σ2E(1−X1θ1)(1−X2θ2)ρedt

or

ω = σ1σ2ρe[1− α1θ1/β1 − α2θ2/β2 + α1θ1α2θ2/(β1β2) + θ1θ2c12]dt.

Finally we require, assuming that both processes are stationary, that cov(X1, X2) =

cov(X1 + dX1, X2 + dX2). Solving this equation for c12 then gives (exercise

10)

c12 =
ρeσ1σ2[1− α1θ1/β1][1− α2θ2/β2]

β1 + β2 − ρeσ1σ2θ1θ2

From this we find the corresponding correlation corr(X1, X2) = ρx = c12√
c11c22

using the fact that corr(X1, X1) = corr(X2, X2) = 1, which turns out to be

(exercise 11)

ρx = corr(X1, X2) = ρe

√
(2β1 − θ2

1σ
2
1)(2β2 − θ2

2σ
2
2)

β1 + β2 − ρeσ1σ2θ1θ2

. (6.3)

Some special cases

Is is often realistic to assume that the local dynamics is the same at two

locations, in which case we can omit the parameter indices. Writing δ =

θ2σ2/(2β) we then find

ρx = ρe
1− δ

1− δρe
. (6.4)

The population correlation ρx is shown as function of the environmental

correlation in Fig.6.4. Since δ is proportional to θ2 and θ expresses the degree

of non-linearity, we can immediately see from the graph that non-linearity

in the dynamics tends to reduce the synchrony in population fluctuations.

This effect increases with the environmental variance σ2 and mean return to
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Figure 6.4: The population correlation ρx as function of the noise correlation

ρe for different values of δ = σ2θ2/(2β) when the population parameters are

constant in space.
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equilibrium 1/β. If θ = 0 giving δ = 0 we have the linear model on the log

scale, and in accordance with what we have already seen, the Moran effect

ρx = ρe then applies.

In order to illustrate the effect of different dynamics at the two locations

we consider the log-linear model, that is, chose θ = 0. The, inserting

s = β1/(β1 + β2) in the general formula we find ρx = ρe
√

4s(1− s). Since

4s(1− s) has maximum 1 for s = 1/2 corresponding to β1 = β2 we see that

any kind of differences in the strength of density-regulation (or return time

to equilibrium) also tends to make the synchrony in population fluctuations

smaller.

6.4 Continuous spatio-temporal models

Although the meta-population approach of considering separate populations

in space is realistic for many organisms, others may be spread over large

areas in a way that makes it impossible to define distinct sub-populations.

In order to describe such populations it is required that we make a distinc-

tion between population density, the mean number of individuals per unit

area, and the process determining the actual positioning of each individual.

The density can often be considered as a continuous function in space and

described mathematically as a stochastic field in space and time when the

dynamics are stochastic. The location of the individuals, however, are more

realistically described by a point process. These two processes may often

have different spatial scales as well as time scales. The point processes deter-

mined by individuals clumping in groups or by competition between single

individuals typically acts over small distances where densities can be con-

sidered as practically constant. Larger distances are required to really see

significant changes in population density. And for the temporal aspects, the

movement of individuals during short time intervals such as days or weeks

may be described by considering the spatial density function as given. The
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density function, on the other hand, changes on a slower time scale, often the

scale of years, as it is yearly reproduction, death, annual migration and envi-

ronmental noise in these variables that determine its variation in space and

time. We now first give some definitions and results for continuous density

functions. Then, in 6.5 we add a point process to see how counts are likely

to vary all the way from very small to very large sampling units or areas.

6.4.1 Population density function and spatial autocor-

relation

Writing z = (z1, z2) for points in the plane we define the spatial density

function at a given time, Λ(z), by the expected number of individuals in

an area A being
∫
A Λ(z)dz. For a small area dz at location z the expected

number of individuals is then Λ(z)dz. If two individuals cannot be at the

same position, then Λ(z)dz also expresses the probability of finding an indi-

vidual at dz. It is often convenient to work with density functions defined

over the whole two-dimensional Euklidian space. Then, choosing two points

at random at prescribed distance h gives two densities, Λ(z) and Λ(z + h).

If Λ is a stationary process in space, then the bivariate distribution of these

two recordings of Λ at distance h is a function of h only. Then as we define

temporal autocovariance functions for stochastic processes in time we define

the spatial autocovariance function c(h) = cov[Λ(z),Λ(z + h)], where z is

interpreted as a point chosen randomly in the field. The corresponding au-

tocorrelation function is then ρ(h) = corr[Λ(z),Λ(z + h)] = c(h)/c(0), where

c(0) = σ2 is the variance of Λ at for random points in space.

6.4.2 Measures of spatial scale

As we have mentioned earlier, different kinds of populations may show syn-

chrony in population fluctuations over very different distances, so it may be

convenient to define parameters defining this scale. Some populations, like

fish in the ocean, may show highly correlated fluctuations over hundreds of
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kilometers, while fluctuations in butterfly populations may be almost inde-

pendent for distances as small as a few kilometers.

Parameters of spatial scale, are properties of the spatial autocorrelation func-

tion. It is tempting to choose the scale as the distance at which the correla-

tion has reached zero. However, such a distance is hard to find as the spatial

correlation may approach zero but actually not reach that value. And if the

function reach zero, that distance may be very hard to estimate accurately

from data. It is therefore more convenient to define the scale as the distance

where the correlation has reached some given value smaller than one. The

value e−1 ≈ 0.37 has been used a lot. Notice that if the correlation func-

tion is not isotropic, that is, ρ(h) is not a function of the Euklidian distance

r =
√
h2

1 + h2
2, then the scale varies with direction. For isotropic models,

however, it is a single parameter.

Another measure which is mathematically convenient, is to consider the cor-

relation as function of distance along a line transect, normalize this function

so that it integrates to one, and use the standard deviation of that distribu-

tion as the scale along the line transect. For the isotropic correlation function

of the Gaussian form

ρ(h) = e−(h21+h22)/(2l2ρ)

the parameter lρ is exactly this scale in any direction. The measurement

defined as the distance where ρ is e−1, however, is lρ
√

2.

6.4.3 Gaussian and log-Gaussian density fields

We now consider a linear model (absolute or log scale) defined at each point

z in space

dXt(z) = [(α− βXt(z)]dt+ σdB(t, z).

Then, we have seen in chapter 3 that the stationary distribution at location

z is normal with mean µ = α/β and variance σ2 = σ2
e/(2β). We have also
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seen in 3.14 that the solution is linear in dB(t, z). This implies that the

stationary distribution for any vector of X-values at some points in space

possess a multivariate normal distribution. Further, in 6.3.2 we saw that the

correlations are the same as the correlations between the noise terms, that is,

the Moran effect holds for this model. The resulting spatial function Xt(z)

when stationarity is reached, is, at a given time, a Gaussian spatial field

with mean value µ and spatial autocovariance function σ2ρ(h), where ρ(h) is

the correlation in the noise terms as function of distance between locations.

Mathematically, this is defined by the relation EdBe(t, z)dBe(t, z + h) =

ρe(h)dt. If X is log density, then the field of population densities Λ(z) = eX(z)

is a log-Gaussian spatial field. As we have seen before, the Moran effect holds

for X but not for Λ. Below we show how such fields can be constructed

mathematically and simulated.

Construction and simulation of Gaussian and log-Gaussian density fields

A Gaussian field of population densities is a field constructed so that the

densities at any finite set of locations has a multivariate normal distribution.

Such fields can be constructed by defining analogies to Brownian motions

and ’white noise’ in space. This can be done by first dividing the plane into

square cells by a grid with sides ∆z1 = ∆z2 and area ∆z = ∆z1∆z2. Let

∆B(z) be independent normal variates defined at each cell center z with

E∆B(z) = 0 and var[∆B(z)] = ∆z. Then, summing the variables over an

area A which is a set of cells is then normal with zero mean and variance A.

The variables W (z) = ∆B(z)/∆z are correspondingly independent normal

variates with zero mean and variance 1/∆z. The above sum over the area A

can then be written as

B(A) =
∑
A

∆B(z) =
∑
A

W (z)∆z.

When passing to the limit as the side length of the squares approach zero we

write accordingly dz, dB(z), and W (z) = dB(z)/dz. The sum of the dB(z)

over A then approaches the integral

B(A) =
∫
A
dB(z) =

∫
A
W (z)dz
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which is normally distributed with zero mean and variance A. The process

W (z), which is constructed exactly as we have previously constructed ’white

noise’ on the time scale, is a ’white noise’ process in space, while B(A) is a

Brownian motion. If we in some way extend the area and plot B(A) against

A the graph will be exactly the one-dimensional Brownian motion as we have

previously defined it as a process in time, only that time has been replaced by

area. Notice that the variance of W (z) is 1/dz and hence approach infinity

in the limit as for ’white noise’ on the temporal scale.

We can now define a Gaussian field Λ(z) as

Λ(z) = µ+
∫
g(z − u)dB(u) = µ+

∫
g(z − u)W (u)du

where the integral runs over the entire plane. As the variance of Λ(z) equals

σ2 =
∫
g(z − u)2du =

∫
g(u)2du we must require that this integral is finite.

Since Λ(z) is linear in normal variates it is normally distributed with mean

µ and variance σ2.

Starting with the grid of squares and passing to the limit we see that the

autocovariance function c(h) = cov[Λ(z),Λ(z + h)] is

c(h) = cov[
∫
g(z−u)dB(u),

∫
g(z+h−u)dB(u)] =

∫
g(z−u)g(z+h−u)du.

Changing variable from u to v = z − u+ h we get

c(h) =
∫
g(v − h)g(v)dv.

Notice that this covariance is the convolution of g(v) with g(−v).

As an example let g have the Gaussian form

g(v) = aφ(v1/b)φ(v2/b)

where φ is the standard normal density function. Then (exercise 12) we

find that c(h) = a2φ(h1/lρ)φ(h2/lρ) where lρ = b
√

2. The variance of this

stochastic field is σ2 = c(0) = a2/(2πl2ρ). Hence, we obtain a stochastic field

Λ(z) with variance σ2 and autocorrelation of the Gaussian form with scale



6.4. CONTINUOUS SPATIO-TEMPORAL MODELS 197

lρ, that is, proportional to a Gaussian distribution with standard error lρ, by

choosing a =
√

2πσ2l2ρ and b = lρ/
√

2. The function g now takes the form

g(v) =
√

2πσ2l2ρφ[v1/(lρ/
√

2)]φ[v2/(lρ/
√

2)].

The problem of finding a function g that leads to a prescribed Gaussian field

is most conveniently solved using Fourier transforms. Here we only consider

the above case of spatial covariance function with Gaussian form.

The Gaussian field can be simulated using discrete square cells ∆z and the

relation Λ(z) ≈ µ+
∑
g(z−u)∆B(u), where ∆B(u) are independent normal

variables with zero mean and variance ∆z. The most efficient approach,

requiring no storing of the ∆B(u), is to simulate the contribution from a cell

at position u to the whole field, and successively add the contributions from

all cells. That is, for each u we first simulate ∆B(u), then add its contribution

g(z − u)∆B(u) to all cells z in the area A we want a picture of. The u-cells

must cover an area which is so large that contributions from outside give

no significant contributions to cells in A. If g(z) is approximately zero for

distances larger than, say l0, then we can use the contributions from all u

at distance smaller than l0 from A. Finally the mean µ must be added to

each cell. Examples of a simulated Gaussian field is shown in Fig.6.5, while

Fig.6.6 shows the corresponding log-Gaussian field with lognormal stationary

distribution.

6.4.4 Effect of permanent heterogeneity in the envi-

ronment

A major reason why population density varies in space is permanent spatial

heterogeneity in habitat quality. A general linear dynamic model for this is

dXt(z) = [α(z)− β(z)Xt(z)]dt+ σ(z)dB(t, z).

Since this is a linear model we can use results for the theta-logistic model with

θ = 0. Then, considering two locations z1 and z2 we see that the stationary
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Figure 6.5: A simulation of a Gaussian field with mean µ = 4, variance

σ2 = 1 and spatial scale lρ = 7.
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Figure 6.6: Simulation of a log-Gaussian field with log-normal stationary

distribution. The logarithm of this field is the Gaussian field shown in Fig.6.5.
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distribution for the two densities are binormal (due to the linearity) with

mean values µ(z) = α(z)/β(z) and variances σ(z)2/[2β(z)], for z = z1, z2.

The correlation is, from equation (6.3)

ρ(z1, z2) = ρe(z2, z2)

√
4β(z1)β(z2)

β(z1) + β(z2)
.

There are two natural biological interpretations of this linear model. First,

the model may be considered as a linearization in population size of some

non-linear model, then X is the population size. Using the definition of γ, the

strength of density regulation, in 2.3 we see (exercise 13) that γ(z) = β(z)

while α(z) = γ(z)K(z), where K(z) is the carrying capacity at location

z. Such a linearization will only be valid for rather small fluctuations in

population size around K(z). The variance parameter σ2(z) should then be

interpreted as the noise at equilibrium, which, expressed by the demographic

and environmental variance is

σ2(z) = σ2
d(z)K(z) + σ2

e(z)K(z)2.

The other interpretation of the model is to define Xt(z) as log population

size, giving what we have called the Gompertz type of model for the popu-

lation size. In this case the strength of density regulation is still γ = β, but

α should be interpreted as the stochastic growth rate and σ2 as the environ-

mental variance σ2
e . The demographic variance is now assumed to be zero.

Alternatively this can also be viewed as a linear approximation in log pop-

ulation size for small fluctuations in log population size around equilibrium,

in which case we have σ2 = σ2
e + σ2

de
−K . In this interpretation K = α/β is

the carrying capacity on the log scale.

For simplicity we now assume that noise as well as density regulation are

homogeneous in space, while the local carrying capacities vary. Then, the

process Yt(z) = Xt(z)−K(z) takes the form

dYt(z) = −γYt(z)dt+ σdB(t, z)
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with spatial autocorrelation ρe(h) (the Moran effect), where ρe(h)dt = E[dB(t, z)dB(t, z+

h)]. The spatial covariance function for Yt is accordingly ρe(h)σ2/(2γ), while

the covariance function for Xt, choosing z randomly in space, is

cov[Xt(z), Xt(z + h)] = ρe(h)σ2/(2γ) + ρK(h)σ2
K ,

where σ2
K and ρK(h) is the variance and spatial autocorrelation for the field

K(z). It follows that the spatial autocorrelation for Xt is

ρ(h) = pρe(h) + (1− p)ρK(h),

where p = σ2/(2γ)/[σ2/(2γ) + σ2
K ].

Writing I with appropriate index for the integral of the correlation along the

given direction, and put q = Ie/(Ie + IK), the spatial scale for the process Xt

can be written as (exercise 14)

l2ρ =
pql2e + (1− p)(1− q)l2K
pq + (1− p)(1− q)

.

We see from this that the spatial scale l takes a value between le and lK .

Large values of p and q gives a scaling close to le. The parameter p is large if

the spatial variance in Xt has a large component σ2/(2γ) due to noise com-

pared to the component σ2
K generated by permanent spatial heterogeneity.

Hence, large noise terms as well as weak density regulation makes the scaling

approach le. The parameter q is large if Ie is large compared to IK . These

integrals are themselves measures of spatial scale of the noise and hetero-

geneity. Using I as a measure of spatial scale we have the simple relation

I = pIe + (1 − p)IK . Hence, the scale of spatial fluctuations in population

density depends on the magnitude as well as the scale of the noise and the

heterogeneity in carrying capacity.

For autocorrelations of the Gaussian type we find (exercise 15)

l2ρ =
pl3e + (1− p)l3K
ple + (1− p)lK

.
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6.4.5 The effect of dispersal in homogeneous linear

models

Dispersal from an area must lead to an immediate reduction in the density

while immigration generates an increase. Although there are single indi-

viduals that disperse, it is not a convenient approach to model each single

individuals contribution to density. As we have defined density, it is a contri-

bution from several individuals, and may also be mean contribution through

shorter time intervals reflecting movements of individuals within their home

range.

Here we shall only consider the linear model for density and assume that dis-

persal out from an area is proportional to the density, that is, all individuals

have the same chance of migrating out of the area. We write m for the migra-

tion rate, that is, the probability that an individual migrate during time dt is

mdt. Individuals that migrate are further assumed to do so instantaneously,

ending up in some other area. The displacement has a two-dimensional sym-

metric distribution g(u) = g(−u). If Xt(z) is the density at z at time t,

migration from area dz at location z during dt is accordingly mXt(x)dzdt.

This migration generates an increase of density at z+u of mXt(z)g(u)dzdudt.

Correspondingly, the density at z gets an increase mXt(z − u)g(u)dzdudt

from individuals dispersing from locations z − u to z. The sum of all these

contributions is then
∫
mXt(z − u)g(u)dzdtdu = mdzdt

∫
Xt(z − u)g(u)du.

Dividing through by dz this leads to the dynamic equation

dXt(z) = [r−γXt(z)]dt−mXt(z)dt+mdt
∫
Xt(z−u)g(u)du+KσedBe(t, z),

(6.5)

where now demographic stochasticity has been ignored so that σ2 = K2σ2
e .

If this model leads to a stationary process in space and time the stationary

spatial covariance function c(h) = cov[Xt(z), Xt(z + h)] does not depend

on t implying that cov[Xt(z), Xt(z + h)] = cov[Xt(z) + dXt(z), Xt(z + h) +

dXt(z + h)]. Using the above dynamic equation and omit terms of order dt2
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that vanish in the limit, this leads to (exercise 16)

c(h) = c(h)[1− 2(γ +m)dt] + 2mdt
∫
c(h− u)g(u)du+K2σ2

eρe(h)dt,

where ρe(h)dt = EdB(t, z)dB(t, z + h) is the spatial autocorrelation in the

environmental noise. Dividing by dt then yields

2(γ +m)c(h) = 2m
∫
c(h− u)g(u)du+K2σ2

eρe(h). (6.6)

Integrating this equation over the entire space gives the relation (exercise

17) Ie = 2γI/(K2σ2
e), where I and Ie are the integrals of c(h) and ρe(h)

respectively. Dividing (6.6) by I then gives

2(γ +m)f(h) = 2m
∫
f(h− u)g(u)du+ 2γfe(h),

where f(h) = c(h)/I and fe(h) = ρe(h)/Ie are distributions. Multiplying by

h2
1 and integrating along the h1-axis then gives the relation (exercise 18)

l2ρ = l2e +
ml2

γ
, (6.7)

where le is the spatial scale of the environmental noise and l is the standard

deviation, both along the direction of the h1-axis. Again, putting m = 0

yields the Moran result lρ = le. The last term in (6.7) represents the effect of

migration on the spatial scale of population synchrony. Interestingly, we see

that even the effect of small short distance migration may be large, provided

that there is a weak density-regulation.

Equation (6.6) is an integral equation that is most easily solved by Fourier

transforms, but can also be solved by elementary methods using recursion

and the fact that the integral is a convolution.

Starting from c0(h) = 0, inserting ci(h) on the left side giving ci+1 on the

right side gives the recursion

ci+1(h) =
m

γ +m
ci ∗ g(h) +

σ2
eK

2

2(γ +m)
ρe(h)
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Figure 6.7: The spatial correlation ρ(h) for different values of m/γ against

distance h for the isotropic Gaussian model for environmental noise as well

as dispersal. Parameter values are le = 10, l = 1.

where ci ∗ g(h) denotes the convolution of ci(h) and g(h). Solving recursively

then gives (exercise 19)

c(h) =
σ2
eK

2

2(γ +m)

ρe(h) +
∫
ρe(h− u)

∞∑
i=1

(
m

γ +m

)i
gi∗(u)du

 (6.8)

where gi∗(h) =
∫
g(h − u)g(i−1)∗(u)du, with g1∗(h) = g(h), is the i-fold con-

volution of the distribution of dispersal distance with itself. Notice that the

spatial autocorrelation function ρ(h) = c(h)/c(0) depends on m and γ only

through their ratio m/γ.

If the environmental correlation has the isotropic Gaussian form and the
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Figure 6.8: Coefficient of variation in density
√
c(0)/K as function of disper-

sal rate m. Parameter values are le = 10, l = 1, and γ = 0.2.
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dispersal has an isotropic Gaussian distribution, then (6.8) takes the form

(exercise 20)

c(h) =
σ2
eK

2

2(γ +m)

∞∑
i=0

(
m

γ +m

)i
φ
(
h/
√
l2e + il2

)
l2e

l2e + il2
(6.9)

where φ is the standard normal density.

Fig.6.7 shows an example of how this spatial autocorrelation changes with

the migration m, and Fig.6.8 shows how the coefficient of variation of the

density
√
c(0)/K decreases with increasing migration.

6.5 Poisson point process in space

Until now we have only dealt with the density-function, not going down to

very small areas where the position of each individual has to be considered.

When sampling biological populations in space, however, samples give in-

dividual counts, and may be counts of individuals in very small areas. For

very small area one may even find only zero or one individual. In order to

study the statistical properties of such counts all the way from very small to

very large areas, it is required that we also analyze the point processes, that

is, give a description of how the position of each individual are distributed

in space. Such a description is a point process superimposed on the density

function we so far have dealt with.

6.5.1 The homogeneous Poisson process in space

The simplest continuous spatial processes are those with constant density

function. The density may vary between years according to some dynamical

stochastic model. We write Λ for the spatially constant density a given

year. By the definition of density, the expected number of individuals in an

area of size A is then ΛA. This function, however, does not alone define

how individuals will distribute themselves in space as this may depend on

the social organization, individuals tendency of staying close in groups, or
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the tendency of avoiding one another due to competition for space or other

resources. The simplest point process for the constant density function is the

Poisson process, where the positioning of each individual is independent of

the position of the others. We arrive at this process by assuming that the

probability of finding an individual in a small area dA is ΛdA, and that these

events are all independent. The moment generating function for the number

of points X in dA is then

MdA(t) = EeXt = (1− ΛdA)e0 + ΛetdA = 1 + (et − 1)ΛdA.

As dA symbolizes an area actually approaching zero, the cumulant generating

function is

KdA(t) = lnMdA(t) = Λ(et − 1)dA.

Since the cumulant generating function for a sum of variables is the sum of

the cumulant generating functions when the variables are independent, we

find for any area A, using the fact that the sum of contributions from each

dA approaches an integral in the limit, that

KA(t) =
∫
A

Λ(et − 1)dA = ΛA(et − 1),

which is the cumulant generating function for the Poisson distribution with

mean ΛA. Hence, the number of individuals in an area A is Poisson dis-

tributed with mean ΛA. Further, the number of individuals in two disjoint

areas must be independent as each term in the sums (integrals) for the two

areas are independent. If follows from this that the variance in individual

number between equally sized areas must be the variance of the Poisson dis-

tribution which equals the mean ΛA. Notice that the coefficient of variation

is 1/
√

ΛA, decreasing with the area A and approaching zero for large areas.

6.5.2 The inhomogeneous Poisson process

The above process may easily be generalized to the case of a general spatial

density function. Again, this function may vary between years, but we only
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consider the distribution of individuals a given year when the function is,

say Λ(z), where z denotes spatial coordinates. Now, we assume that the

probability of an individual being located in a small area dA = dz at location

z is Λ(z)dA. Assuming independence as before we then find that KdA(t; z) =

Λ(z)(et − 1)dA. Finally, integrating over the area A gives

KA(t) =
∫
A

Λ(z)(et − 1)dA = (et − 1)
∫
A

Λ(z)dz.

Hence, even in the case of varying density, the number of individuals in

disjoint areas are independent Poisson variates, the mean value for an area

A being
∫
A Λ(z)dz, that is, the volume under the curve Λ(z) in the area A.

Alternatively we can write the parameter as Λ̄A, where Λ̄ = A−1
∫
A Λ(z)dz

is the mean density in A.

6.6 Point processes with dependence between

individuals

The above homogeneous Poisson process and the inhomogeneous Poisson pro-

cess for a given density field both assume no dependence between individuals.

In practice, individuals will often choose positions in a way that depends on

positioning of other individuals. Individuals may avoid each other due to

intra-specific competition, or they may tend to group together as a social

behavior. Point processes for competition leading to under-dispersion rel-

ative to the poisson process tends to be mathematically intractable. Also,

over-dispersion relative to the Poisson process is more common in biological

populations. For the above homogeneous as well as inhomogeneous Pois-

son process there is no dependence between individual positions for a given

density function.
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6.6.1 The covariance function for a point process

We now adopt the notation dN(z) for the number of individuals in the in-

finitesimal area dz at location z. Then, for a given density function Λ we

have EdN(z) = Λ(z)dz, which is also the probability that the there is one

individual at z provided that two individuals can not be located exactly at

the same point.

The dependence of each individual’s position on other individuals can then

be described by the concept of product density at two locations u and v

(u 6= v) defined as E[dN(u)dN(v)] = f(u, v)dudv where the expectation is

taken with respect to the point process for some given density function. The

spatial covariance function for the point process is defined accordingly as

g(u, v) = f(u, v)−Λ(u)Λ(v), which is the covariance between dN(u)/du and

dN(v)/dv. For the above homogeneous or inhomogeneous Poisson process

the individuals’ positions were independent of each other, implying that the

the covariance function g(u, v) is zero.

We define the point process covariance function for a random point z and a

given displacement h 6= 0 as the mean value

Cp(h) = Ezg(z, z + h).

where Ez refers to the random choice of z in space. Here we have used

the subscript p to emphasize that this component of the spatial covariance

function is made up of covariances that are generated by the point process

defining local displacement of individuals.

It remains to evaluate the unconditional covariance function, also taking into

account the spatial covariance function Cd(h) = covz[Λ(z),Λ(z + h)] of the

field Λ, where d denotes density and covz is the covariance evaluated for

random choice of z. We define the total spatial covariance function, taking

into account the point process as well as the random choice of z, as

C(h) = cov[dN(z), dN(z + h)]/[dzd(z + h)]
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Using the general formula for unconditional covariances, first conditioning

on z, we then find that

C(h) = Cp(h) + Cd(h).

In the following section we define a process with the property that knowing

an individual exists at a given displacement from another individual has

an effect that is independent of density. For given positions u and v we

assume that P [dN(v) = 1|dN(u) = 1] = Λ(v)β(v − u)dv, where β is a

function of the non-zero displacement that is one for the inhomogeneous

Poisson process, larger than one if there is a tendency for clumping, and

less than one if the individuals are more regularly spread than the Poisson

process, e.g. due to competition for resources or space. Using the definition

of the covariance function for the point process we then find g(u, v) = [β(u−
v)− 1)Λ(u)Λ(v)dudv giving Cp(h) = [β(h)− 1][µ2 +Cd(h)] showing that Cp

in general may depend on Cd.

6.6.2 Overdispersion in the point process defined by

log-Gaussian field

To find a process with the above multiplicative property consider a given

spatial density field Λ(u) and a spatial Gaussian field ln Ω(u) with mean

−τ 2/2 and spatial covariance function τ 2ρp(z) where the subscript p indicates

that this correlation is a property of the point process. We shall use the

field Ω to define the positioning of individuals. Hence, as individuals may

redistribute themselves quite often, the field Ω may change quickly with

time. However, at a given time Ω is a lognormal spatial field with mean

1. Individuals are spread according to an inhomogenious Poisson process

with mean Λ(u)Ω(u). At given positions u and u+ z the densities, say X

and Y , have a bivariate lognormal distribution with mean values Λ(u) and

Λ(u+ z), and the log densities are binormally distributed with mean values

µx = ln Λ(u)−τ 2/2 and µy = ln Λ(u+ z)−τ 2/2, variances τ 2 and correlation

ρp(z). The marginal distribution of X is the lognormal
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Figure 6.9: A simulation of the point process with constant density equal to

one. The field ln Ω(u) generating the point process has parameter τ = 2 and

the Gaussian type of spatial autocorrelation with standard deviation lp = 5.

fX(x) =
1√
2πτ

1

x
e−

1
2( ln x−µx

τ )
2

.

Fig.6.9 and Fig.6.10 show a realization of such a process with constant and

variable density.

In order to give an idea of how individuals in this process relate to each other

we now derive an expression for how the knowledge of an individuals in a

given position affects the probability of finding one at some nearby location.

Let B denote the event that there is an individual at du. Then, considering

the conditional probability P (B|X = x) = xdu and using Bayes’ formula
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Figure 6.10: A simulation of the point process with log-Gaussian type of

spatial density. The variance of ln Λ(u) is 1 with spatial autocorrelation

of the Gaussian type with standard deviation ld = 20. The field ln Ω(u)

generating the point process has parameter τ = 2 and the Gaussian type of

spatial autocorrelation with standard deviation lp = 5.
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f(x|B) =
P (B|X = x)f(x)

P (B)

where P (B) =
∫
P (B|X = x)f(x)dx, the distribution of X given the event B

is seen to be proportional to xfX(x) (the first moment distribution) which is

itself a lognormal distribution fX(x) with µx replaced by µx + τ 2/2 (exercise

21). The distribution of lnY conditioned on X = x is normal with mean

µy + ρp(z)(lnx − µx) and variance τ 2[1 − ρp(z)2]. Using the conditional

distribution f(x|B) we then see that the marginal distribution of lnY given

B is normal with mean µy + ρp(z)τ 2/2 and variance τ 2. The mean of Y

given B is accordingly exp[µy + 1
2
τ 2ρp(z) + 1

2
τ 2]. For a given value y of Y the

probability of finding an individual at d(u+ z) is yd(u+ z), and conditional

on B this probability is E(Y |B)d(u+ z) = Λ(u+ z)eτ
2ρp(z)/2d(u+ z).

Hence, this point process has the nice property that the information about

an individual being at distance z from a point changes the probability of

an individual at this point by the factor β(z) = eτ
2ρp(z)/2. If there is no

correlation, that is, at distances large enough for ρp(z) to be zero, this factor

is 1, and there is no effect of the other individual. On the other hand, an

individual at a close distance with ρp ≈ 1 gives a factor eτ
2/2 which is large

for large values of τ .

6.6.3 Mean and variance of counts in an area

Let now A be an area of given shape and size and suppose sampling is

performed by counting individuals in such areas chosen at random positions

in space. Initially let A be the union of small cells ∆z with ∆N(z) individuals

so that the total number of individuals in A is N =
∑
z ∆N(z), where the

sum is taken over all cells defining A. Then EN =
∑

E∆N and varN =∑
z var[∆N(z)] +

∑
z

∑
u cov[∆N(z),∆N(u)]. As the cell size approach zero

the sum approach the corresponding integrals giving mean value

EN =
∫
A

EdN(z) =
∫
A
µdz = µA
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and variance

var(N) =
∫ ∫

C(z − u)dzdu+
∫
A
µdz,

where the double integral runs over A2 excluding z = u. The last integral is

the contribution from the points z = u which is the only term different from

zero if the points obey the homogeneous Poisson process in space, that is, the

field Λ of population densities is constant and the individuals are randomly

distributed. For such a process we have no autocorrelation for either the

point process or the population density and find EN = var(N) = µA in

accordance with the theory for the homogeneous Poisson process.

For an isotropic model the above double integral can alternatively be ex-

pressed as A2EC(R) where R is the distance between two points chosen at

random in the area A.

Let us now keep the shape of the sampling unit constant, for example as a

quadrat or a circle, and let the area vary. If the area has unit size, A = 1,

then the distribution of R, say f1(r), can in principle be derived for any

shape. In general, the variance of the number of individuals within an area

of size A chosen at random in the field is then

var(N) = µA+ A2
∫ rmax

0
C(r
√
A)f1(r)dr, (6.10)

where rmax is the maximum distance between two points in the unit area.

For the quadrat with unit area we have accordingly that rmax =
√

2.

Here we consider quadrats only, for which the distribution of the distance

between two randomly chosen points is (exercise 22)

f1(r) =

 2r(π + r2 − 4r) for 0 ≤ r ≤ 1

2r[2 arcsin(2/r2 − 1) + 4(r2 − 1)1/2 − 2− r2] for 1 ≤ r ≤
√

2.

(6.11)

The mean and variance can now be computed numerically for any model for

population density given by Cd(h) with superimposed point process given by
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Cp(h) by plugging C(h) = Cp(h)+Cd(h) into equation (6.10) and performing

the integration numerically.

6.7 Relations to Taylor’s scaling laws

Taylor’s scaling law are empirical laws for the relation between the mean m

and variance V of the number of individuals. For a number of different types

of sampling in space and time it has been observed that there is approxi-

mately a linear relationship between V and m in a double logarithmic plot

with a slope usually found to be between 1 and 2. Here, equation (6.10) gives

this relationship indirectly for the case that m varies by changing the size of

the sampling unit.

6.7.1 General expression for the variance as function

of the mean

Substituting C = Cp + Cd we first separate the variance into components

generated by the point process and the spatial density function. As the first

term µA is also generated by the point process, we include this term and

write ν(A)µ for the point process variance component, giving

ν(A) = 1 + Aµ−1
∫ rmax

0
Cp(r
√
A)f1(r)dr. (6.12)

This is an expression for the over-dispersion in the point process relative to

the inhomogeneous Poisson process. It is approximately independent of the

sampling area A if the scale of the point process is small compared to the

side length
√
A of the quadrat used as sampling unit. For the inhomogeneous

Poisson process we see that ν = 1 because Cp = 0. Since interactions between

individuals usually occurs at rather small distances we often have that Cp is

approximately zero for distances larger than say lp. In that case, appreciable

contributions to the integral exist only for r < lp/
√
A. If lp/

√
A is much

smaller than one it follows from equation (6.11) that f1(r) ≈ 2πr for values
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of r that contribute to the integral. By a simple scale transformation (exercise

23) of the integration variable we then find that ν ≈ 1 + 2µ−1π
∫∞

0 uCp(u)du

and hence, becomes approximately independent of the area.

With this decomposition the relation between the variance and the area takes

the form

var(N) = ν(A)µA+ A2
∫ rmax

0
Cd(r
√
A)f1(r)dr. (6.13)

Expressing the variance as function of m = µA then gives

V (m) = ν(m/µ)m+m2µ−2
∫ rmax

0
Cd(r

√
m/µ)f1(r)dr. (6.14)

6.7.2 Approximations for small and large sampling ar-

eas

Small quadrats

The spatial scale of the density covariance function Cd will often be large

compared to the side-length of the quadrat. Then Cd(r
√
A) ≈ Cd(0) = σ2

for the whole range of the variable r. If ν is approximately constant this

gives the quadratic relationship

V (m) ≈ νm+ c2
vm

2, (6.15)

where cv = σ/µ is the coefficient of variation for densities Λ in space. As the

maximum value of r is
√

2 for a quadrat, this relation is a good approxima-

tion if Cd(
√

2A) = Cd(
√

2m/µ) ≈ Cd(0) = σ2.

Large quadrats

For large areas we utilize the known distribution f1(r) given by (6.11) to find

an approximate relationship. The density covariance function Cd(r) usually

approaches zero as r approaches infinity. If Cd(
√
A) ≈ 0, that is, the zero

value is reached approximately within the quadrat, we may use the formula

for f1(r) valid for r < 1, giving the approximation (exercise 24)
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V (m) ≈ (ν + 2πα1/µ)m− 8α2µ
−1/2m1/2 + 2α3 (6.16)

for large values of m = Aµ, where αj =
∫∞
0 Cd(r)r

jdr.

If Cd the Gaussian form with scale l, we have (exercise 25) α1 = σ2l2,

α2 =
√

π
2
σ2l3, and α3 = 2σ2l4. For an exponentially decreasing function

Cd(r) = σ2e−r/l the corresponding values are (exercise 26) αj = j!σ2lj+1.

6.7.3 The slope in Taylor’s scaling law

Our approximate relation between the variance and the mean does not have

the form V (m) = amb known as Taylor’s scaling law, neither for small not

for large areas. However, our approximations for small and large areas can

be used to investigate the form of this function. From equations (6.15) and

(6.16) we see that lnV is approximately linear in lnm for very small and

very large lnm (Fig.6.11), with intercept ln ν for small values of lnm and

ln(ν + 2πα1/µ) for large quadrats. The quadratic term in (6.15) has the

effect that the difference between lnV and ln ν + lnm increase with lnm,

so that lnV approaches a straight line for large lnm. The value of lnV

computed from equation (6.15) is half way between the two straight lines

with slope 1 for m∗ = πα1/(µc
2
v). At this value of m we should therefore

expect the slope to be close to its largest value. For the Gaussian model of

spatial autocorrelation this value is m∗ = πl2µ, occurring at sampling area

A∗ = m∗/µ, giving simply A∗ = πl2.

The slope of lnV versus lnm will therefore be largest when the the quadrat

side-length roughly equals the scale l of the spatial covariance function Cd.

Fig.6.11 shows examples demonstrating how the functions are affected by the

scale l. It appears that the slope first increases from 1 to 2 with increasing

lnm, which is a consequence of equation (6.15). For small values of m the

first term is dominating, giving slope 1, while the second term dominates

for larger values of m so that the slope approximately equals 2. For even
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Figure 6.11: Upper panel gives log variance (lnV ) as function of log mean

(lnm) for increasing size of quadrats and different values of the spatial scale

l of the Gaussian type of covariance function Cd(r). Other parameters are

ν = 1, µ = 1, and cv = 0.5. The lower panel shows the derivatives of the

functions depicted in the upper panel.
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larger m, that is, as m gets much larger than l
√
πµ, the curve approaches

the large m approximation given by equation (6.16), which again has slope 1

on the log scale. Accordingly, the curves in practice will be indistinguishable

from straight lines even over rather large ranges of values of m (Fig.6.11). In

empirical data analysis the values of lnV are usually estimated from sums

of squares with rather large uncertainty, so the estimated values will seem to

be spread around a straight line.

6.8 Exercises

1. Find the diffusion approximation to the meta-population model in 6.2.

2. Find the return time to the quasi-stationary equilibrium for the meta-

population model in 6.2.

3. Show that the state of a first order autoregressive model is a linear com-

bination of noise terms.

4. Show the Moran effect, that the correlation between two log population

sizes is the same as the correlation between the noise terms, is correct for

two log population sizes described as first order autoregressive models with

equal strength of density-regulation.

5. Show that the correlation between the population sizes for the bivari-

ate Ornstein-Uhlenbeck process for log population sizes described in 6.3.2 is

corr(Nx, Ny) = (eσ1σ2ρe − 1)/
√

(eσ
2
1 − 1)(eσ

2
2 − 1).

6. Show that the absolute value of the correlation in exercise 5 is always

smaller than |ρe|.
Hint: For ρe > 0 show that (eσ1σ2ρe − 1)/ρe is an increasing function of ρe.

Then show that the result holds for ρe = 1 (if σ1 6= σ2) and hence for all

values of ρe > 0. Use a similar approach for ρe < 0.

7. Derive the diffusion for the transformed variable X = g(N) = (1−N−θ)/θ
when the fluctuations in N are given by the theta-logistic diffusion with no

demographic variance.

8. Show that the stochastic differential equation dXt = [µ(Xt)− 1
4
ν ′(Xt)]dt+
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√
ν(Xt)dB(t) for the model in exercise 7 takes the form dXt = (α− βXt) +

(1− θXt)σdB(t) where α = r − σ2/2 and β = r/g(K)− θσ2/2.

9. For two islands described by theta-logistic models with correlated noise

derive the expression for the parameter ω = σ1σ2cov[(1 − X1θ1)dB1, (1 −
X2θ2)dB2 given in the text.

10. For the model in exercise 9 derive the stationary covariance c12 between

the ’population sizes’ on the X-scale.

11. Derive the expression for the correlation c12/
√
c11c22 given in the text.

12. Consider the equation c(h) =
∫
g(v − h)g(v)dv and show that g(v) =√

2πσ2l2ρφ[v1/(lρ/
√

2)]φ[v2/(lρ/
√

2)] leads to the Gaussian autocovariance func-

tion c(h) = 2πσ2l2ρφ(h1/lρ)φ(h2/lρ), where φ is the standard normal density.

13. Consider the model dX = (α − βX)dt + σdB(t) as a linearization of a

non-linear model interpreting X as population size. Use the definition of γ,

the strength density regulation, in 2.3 to show that γ = β.

14. Writing I with appropriate index for the integral of the correlation along

the given direction, and put q = Ie/(Ie + IK), show that the spatial scale for

the process Xt given in 6.4.4 can be written as l2ρ = pql2e + (1− p)(1− q)l2K ,
where p = σ2/(2γ)/[σ2/(2γ) + σ2

K ].

15. For autocorrelations ρe and ρK of the Gaussian form show that the spatial

scale in exercise 14 obeys l2ρ = [pl3e + (1− p)l3K ]/[ple + (1− p)lK ].

16. Show that the dynamic equation (6.5) leads to equation (6.6) when the

process is stationary in space and time.

17. Use equation (6.6) to show that Ie = 2γI/(K2σ2
e), where I and Ie are

the integrals of c(h) and ρe(h) respectively.

18. From the equation 2(γ+m)f(h) = 2m
∫
f(h− u)g(u)du+ γfe(h), where

f(h) = c(h)/I and fe(h) = ρe(h)/Ie, show the scaling result (6.7).

19. Use the recurrence formula ci+1(h) = m
γ+m

ci ∗g(h)+ σ2
e

2(γ+m)
ρe(h) to derive

equation (6.8).

20. Show that the spatial autocorrelation is given by equation (6.9) when the

environmental correlation has the isotropic Gaussian form and the dispersal

has an isotropic Gaussian distribution.
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21. Let X be a random variable with distribution f(x). Let the probability

of an event B conditioned on the event (X = x) be P (B|X = x) = g(x).

Use Bayes’ formula to show that the distribution of X conditioned on B

is then f(x|B) = g(x)f(x)/
∫
g(u)f(u)du. Use this to show that the corre-

sponding distribution in 6.5.3 with g(x) = xdu is the lognormal, and find the

parameters of this distribution.

22. Show that the distribution of the distance between two points chosen at

random in a unit quadrat is f1(r) given by equation (6.11).

23. Use the definition given by equation (6.12) to show that the over-

dispersion ν(A) is approximately independent of the area when the scale

of Cp is small compared to the side length
√
A of the quadrat, that is, derive

the relation ν ≈ 1 + 2µ−1π
∫∞

0 uCp(u)du.

24. Use the formula for f1(r) valid for r < 1 to show that V (m) ≈ (ν +

2πα1/µ)m − 8α2µ
−1/2m1/2 + 2α3 for large values of m = Aµ, where αj =∫∞

0 Cd(r)r
jdr.

25. When Cd has the Gaussian form with scale l show that α1 = σ2l2,

α2 = 1
2
σ2l3, and α3 = 2σ2l4, where αj =

∫∞
0 Cd(r)r

jdr.

26. For an exponentially decreasing function Cd(r) = σ2e−r/l show that

αj =
∫∞

0 Cd(r)r
jdr = (j − 1)!σ2lj+1.
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Chapter 7

Community models

7.1 Introduction

Until now we have discussed a number of stochastic models for a single species

only. However, in this discussion we have not ignored the presence of prey,

predators and competitors that may affect the dynamics. Our philosophy,

which is often in good agreement with empirical findings, is that other species

affect one single species in a very complex way. Such complex multivariate

interactions are most conveniently described by collecting all biological ef-

fects, together with physical components of the environment, into an envi-

ronmental vector z that fluctuates between years and generate environmental

stochasticity in population growth rates.

The same philosophy is commonly carried over to studies of communities

where a large number of species abundances are recorded jointly. Although

there may be interactions, the major part of them are most conveniently de-

scribed by introducing random effects through stochastic terms rather than

trying to characterize all specific interactions by deterministic effects express-

ing for example the degree of competition between all pairs of species. Such

models necessarily require a very large number of parameters even under

simple linearizations, and lead to over-parametrization relative to the in-

formation that can possibly be obtained through data collection. Therefore,

223
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stochasticity plays an even more important role in community dynamics than

in single species theory. Even models where almost any temporal and spatial

changes are purely stochastic, the so-called neutral community models, have

become very popular during the last 20-30 years, mainly through the work of

S.P. Hubbell on models describing temporal and spatial dynamics of tropical

trees.

Realistic description of communities is definitely a complex task that requires

some new concepts in addition to those we have used for a single species. One

observation of a single species abundance at a given time will only give us a

single number and is hardly interesting at all. So, in order to understand the

biological processes involved we need repeated observations in time and space.

This fact stands in deep contrast to the study of communities. Actually, the

major fraction of papers on ecological communities are dealing just with one

single sample. However, the fact that such a sample reflects the abundances

of a large number of species, raises many interesting questions that can be

analyzed without repeating sampling in time or space. For example, the

number of different species recorded is by itself an interesting statistic, as

well as measurements expressing how abundances vary among species. Such

description of a sample from a community can be carried out in a purely

statistical way through estimation of appropriate indices of diversity, often

defined using the vector of relative species abundances. This requires some

knowledge of the sampling method used, but can be performed without going

into complex modeling details concerning spatial and temporal dynamics.

However, two samples can be compared using appropriate measurements of

similarity, which again can form the bases for statistical analysis of temporal

and spatial variation in community composition.

Although we first are going to present some simple descriptive measurements,

our main focus will be on dynamic models for species abundance distribu-

tions utilizing the theory of single species dynamics presented in chapters 1-3.

We will make links between these models and the concepts of diversity, its

variation in time and space, as well as the concept of similarity. We first con-
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sider neutral models and their connection to neutral gene frequency models

in population genetics. Next, we define models with mathematically identi-

cal species with some deterministic forcing on the abundance of each species

through density regulation. Finally, we go on to heterogeneous models with

dynamical parameters varying among species.

7.2 Diversity and similarity

Let y1, y2, . . . , ys be the abundances of a species in the community. These

quantities could be the number of individuals or some measure of density. In

any case we assume that the expected number of individuals representing a

species with abundance yi in a random sample is proportional to yi, with a

constant of proportionality depending on the sampling effort. The relative

abundances are p1, p2, . . . , ps where pi = yi/
∑
yj so that

∑
pi = 1.

There is a large number of diversity indices proposed in the literature. Here

we only mention briefly the two most commonly applied measurements, the

information index and Simpson’s index. The information index, often also

called Shannon’s index, is borrowed from information theory and defined as

HI = −
∑

pi ln pi.

It is easy to show (exercise 1) that HI reaches its maximum ln s for a given

s for equal abundances, that is, for pi = 1/s. As a single pi approaches one

and the others zero, the index approaches zero. Hence, the value depends on

the distribution of abundances among the species as well as the number of

species in the community.

Simpson’s index is defined by considering two individuals sampled at random

(with replacement) from the community. The probability that they both

belong to species i is then p2
i , and the probability that they belong to the

same species is
∑
p2
i . Simpson’s diversity index HS is the probability that

they belong to different species, that is

HS = 1−
∑

p2
i .
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This index also takes its maximum for equal abundances (exercise 2), the

maximum being (s− 1)/s.

As the number of species increases we see that there is little change in the

maximum of Simpson’s index compared to the information index. Conse-

quently, the information index is considered to be more sensitive to changes

in species number. The value of Simpson’s index is mainly determined by

the few most abundant species. For example, if p1 = 0.9, so that species 1

is the dominant species in the community, Simpson’s index is smaller than

1 − 0.92 = 0.19 regardless how large s is, and is therefore classified as a

’dominance index’. The information index, however, can be made arbitrarily

large even if p1 = 0.9 (exercise 3), and is therefor a ’species richness index’.

The index most sensitive to species number is, however, the species number

s itself.

Unbiased estimation of Simpson’s index is straightforward under the assump-

tion of multinomial sampling (exercise 4). Under the same sampling model

no unbiased estimator of HI exists (exercise 5), and estimation may be diffi-

cult when there is a large number of rare species in the community, many of

which not appearing in a finite sample.

Similarity indices are constructed to compare two communities. The most

commonly used indices are the Jaccard and Sørensen index, which are actu-

ally equivalent. These indices are only based on counting the species occur-

ring in both communities and only in one of them, and are not affected by

the distribution of abundance among species. The Jaccard index is

J =
A

A+B + C
,

where A is the number of species present in both communities, while B and

C are the species number only present in one or the other. The Sørensen

index is

L =
2A

2A+B + C
.

The equivalence of the indices are given by the simple functional relationship

between them, L = 2J/(J + 1) or J = L/(2− L).
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These indices are usually estimated from samples by replacing the species

numbers in the communities by observed number of species. However, these

estimates can be extremely biased. General methods for bias correction are

proposed in the literature, but even these methods can not be trusted in the

case of many rare species. We shall return to these problems when dealing

with abundance models.

There has been much focus in the literature on applying indices of diversity

and similarity in studies of spatial distribution of species in a community.

Since the species abundances and the species composition of the commu-

nity generally changes in space, the diversity at a given local site is usually

smaller than the diversity for the total community occupying a large area.

The first one has by R.H. Whittaker been named α-diversity and the last is

called γ-diversity. The difference between them, which is related to species

turnover rate in space, is called β-diversity. For example, if there is large

β-diversity, then similarity indices tend to decrease rapidly with increasing

distance between the local communities compared.

7.3 Some history of species abundance mod-

els

Around 1920 botanists started to study how the number of species recorded

in samples increased with the sampling area. However, these scientists were

most interested in species number and did not relate their findings to distri-

bution of abundance among the species in the community. The first empirical

studies of such distributions were done around 1940, while the first mathe-

matical model fitted to data on butterflies was developed by R.A. Fisher in a

classical paper in 1943. Fisher’s approach discussed below was based on us-

ing an extremely skew gamma distribution for the abundances and assuming

Poisson sampling, that is, for a given abundance the number of recordings

of a species is Poisson distributed with mean proportional to its abundance.

The distribution of individuals among species in the sample then follows what
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has become known as Fisher’s logarithmic series distribution, a limiting form

of the zero-truncated negative binomial distribution.

In 1948 F.W. Preston analyzed several large data sets and plotted his data

in a way that revealed the shape of the distribution of log abundance. These

histograms looked like samples from a normal distribution, but where cen-

sored at low abundances because a large number of rare species are unlikely

to appear in the sample. Preston did not attempt to model the sampling

process using the Poisson model, as Fisher did 5 years earlier. Actually, the

Poisson mixture obtained by using the lognormal distribution of abundances

is mathematically more intractable than the mixture based on the gamma

distribution, which is known to lead to the negative binomial distribution.

A maximum likelihood estimation procedure for the Poisson lognormal dis-

tribution was not developed until M. Bulmer did so in 1974. Now, however,

simple numerical maximization of the likelihood function can easily be done

using standard computer software.

The influential ecologist R.H. MacArthur used a rather different approach in

1957, presenting a very simple model that probably was meant to initiate a

discussion rather that being a generally valid species abundance distribution.

He used the niche concept, arguing that similar species compete for resources

and accordingly divide the niche space among them. His simple model, that

actually fits well to many bird communities, was to through s − 1 point at

random on a line segment of unit length and let the lengths of the segments

defined by these points be the relative abundances of the s species in the

community. This is a way of thinking that is rather different from just

defining a distribution of abundances, since MacArthur actually attempted

to model the niche sharing process. The sharing process defined in this way

may appear to be purely stochastic, but the underlying idea is that species

occupy different niches in a way determined by their competitive ability.

The fact that one species may end up with large abundance while another

is rare, is due to differences in traits and how these relate to properties of

the occupied territory. Hence, the subdivision of the niche space defined
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by MacArthur is meant to be temporarily permanent. Although his model,

known as ’MacArthur’s broken stick model’, was oversimplified, his idea has

had large impact, inspiring many scientists to develop more realistic niche

sharing models.

The counterpart of MacArthur’s model is the concept of neutral community

models, where nothing is permanent, first introduced by H. Caswell in 1976,

and later developed further by the influential ecologist S.P. Hubbell, studying

distributions of abundance among tropical trees. Neutral community mod-

els, where all temporal changes in species abundances are purely stochastic

and there are no permanent differences among species other than their real-

ized abundances, are inherited from population genetics. Neutral genes are

genes that are not subject to selection and are analog to species having the

same growth rate and the same stochastic dynamics defined by demographic

stochasticity only. The total number of alleles then represents the commu-

nity size, each allele represents a species, allele frequencies represent relative

species abundances, and mutations represent new species entering the com-

munity by speciation or colonization. The neutral theory of gene frequencies

was initiated by Crow and Kimura in 1964, that is, 21 after Fisher publisher

his logarithmic series model. Quite remarkably however, the distribution of

relative abundances and gene frequencies in these influential papers are the

same. This has later inspired ecologists to go further in utilizing neutral gene

frequency models in community ecology.

7.4 Neutral species abundance models

7.4.1 The genetic neutral model with random muta-

tions

We consider a constant population with N individuals of a diploid organism

in which the genetic drift is determined by the variance effective population

size Ne. At a given locus all alleles are assumed to be neutral. We also make
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the assumption that mutations occur at rate u, and that all mutations result

in alleles not already present in the population, giving what is often called the

infinite allele model. As the mutation rate is small, it will practically have no

effect on the variance of changes in relative abundances. Consequently, the

variance in gene frequency change for an allele A with frequency p is approx-

imately var(∆p) = p(1 − p)/(2Ne). The probability that an A will mutate

and give a reduction −1/(2N) in the frequency of A is 2Npu. Accordingly,

the expected change in the frequency of A is E(∆p) = −pu. Now, consider-

ing an allele that initially has frequency p0 = 1/(2N) and approximating the

process for its frequency by a diffusion with infinitesimal mean and variance

µ(p) = −pu and ν(p) = p(1 − p)/(2Ne), the Green function for p > p0 with

extinction barrier at p = 0 is (exercise 6)

G(p, p0) =
S(p0)

s(p)ν(p)
= cp−1(1− p)4Neu−1,

where c is a constant. By definition, the Green function multiplied by ∆p

expresses the expected time the process is in [p, p+∆p] before it goes extinct.

After a long time there will be a balance between mutations and extinctions

and the multivariate process for the set of all gene frequencies will reach

stationarity. Since any allele frequency can be described by the above process,

the fraction of a long time interval during which the frequency of any allele

present in the population takes a value in [p, p + ∆p] must be proportional

to G(p, p0)∆p. Consequently, if an allele is chosen at random from the list

of those present in the population at a given time, the distribution of its

frequency must be proportional to p−1(1 − p)M−1, for p > p0, where M =

4Neu. Hence, also the expected number of alleles with frequency in [p, p+∆p],

say f(p)∆p, must be proportional to the Green function multiplied by ∆p.

To find the correct scaling factor we use the fact that the frequencies add up

to one. The expected total frequency of alleles with frequency in [p, p+ ∆p]

is pf(p)∆p, so the total expected sum of frequencies is
∫ 1
p0
pf(p)dp = 1 giving

c ≈ M (exercise 7). The function f(p) = Mp−1(1 − p)M−1 is sometimes

called the ’frequency spectrum’.
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If we choose an allele at random from all 2N alleles in the population rather

than an allele from the list of alleles present, an allele with frequency p

is chosen with probability p, and the distribution of its frequency must be

proportional to M(1− p)M−1. As we have seen, the integral of this function

representing the sum of all gene frequencies equals 1, so this is actually a

distribution. Similarly, the sum of squares of gene frequencies, which is the

fraction of homozygotes, is (exercise 8)

H =
∫ 1

0
p2f(p)dp = 1/(M + 1).

This is also the probability that two alleles chosen at random are equivalent.

Hence, 1 minus this quantity is the probability that they are different. This

corresponds to Simpson’s index of diversity

HS =
M

M + 1
,

now used as a measure of genetic diversity.

7.4.2 Fisher’s log series distribution

When recording the number of species zn with n representatives in a large

sample of butterflies caught in light traps, the two entomologists A. S. Cor-

bet and C. B. Williams discovered that the sequence zn for n = 1, 2 . . .,

was approximately proportional to the harmonic series 1/n for many large

data sets. A similar data set of tropical butterflies collected by P.J. De-

Vries over a period of 5 years is shown in Fig.7.1. This observed pattern led

R.A. Fisher in 1943 to propose his classical log-series distribution for species

abundances in a sample. He approached the problem by first assuming that

the species abundances y followed the gamma distribution [ρk/Γ(k)]yk−1e−ρy

among species, and that a species with abundance y would be represented

by a Poisson-distributed number of individuals in the sample with mean νy,

where ν is a measure of sampling intensity. Then, the species actually ob-

served will have abundances in the sample following a zero-truncated negative
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binomial distribution (exercise 9). In the limit as the number of species s

approaches infinity and the shape parameter k approaches zero so that sk

approaches a constant α, this distribution becomes Fisher’s well known log-

arithmic series distribution, [− ln(1− w)]−1wn/n, n = 1, 2, . . . (exercise 10),

where w = ν/(ν + ρ), and the expected number of species with n represen-

tatives in the sample becomes (exercise 11)

E(zn) = αwn/n.

.

Notice that w ≈ 1 for very large samples so that the sequence is practically

the harmonic series if n is not extremely large. If the abundances y in the

community are scaled so that the total expected abundance is one, then

sk/ρ = 1 and α = ρ. The parameter α, which is the single parameter

describing the structure of a population following Fisher’s model, was later

by Williams called the diversity of the community.

For a positive k the relative abundances pi = yi/
∑s
j=1 yj, follow a Dirichlet

distribution, while the marginal distribution for a given species is the beta

distribution [Γ(α)/[Γ(k)Γ(α − k)]pk−1(1 − p)α−k−1 (exercise 12). Hence, we

find the expected number of species with relative abundance in the interval

(p, p+dp) by multiplying by sdp, which under Fisher’s limit becomes αp−1(1−
p)α−1dp (exercise 13), showing that the ’frequency spectrum’ is the same in

Fisher’s species abundance model and Crow and Kimura’s neutral infinite

allele model, Fisher’s α corresponding to M = 4Neu in the genetic model.

It follows from our analysis of the neutral genetic model that the expected

value of Simpson’s index in Fisher’s model must be α/(1+α). We may adopt

the same approach to find the expected value of the information index. The

expected contribution to the index from species with relative abundances in

(p, p+dp) is f(p)(−p ln p)dp, and consequently, adding expected contributions

from all segments of length dp gives

E(HI) = −
∫ 1

0
α ln p (1− p)α−1dp.
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Figure 7.1: The number of species zn with n representatives in the sample

plotted against n for a data set of tropical butterflies collected by P.J. De-

Vries. There are also 26 species with individual numbers larger than 60,

the largest individual number being 756. There are 128 species and 11861

individuals in the sample.
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Solving the integral (exercise 14) gives

E(HI) = Ψ(α + 1)−Ψ(1)

where Ψ(t) = d
dt

ln Γ(t) is the digamma function for which Ψ(t+ 1) = Ψ(t) +

1/t and

Ψ(t) = ln t− 1

2
t−1 − 1

12
5t−2 +

1

120
t−4 − 1

252
t−6 + · · ·

In particular Ψ(1) = −γ, where γ = 0.5772 . . . is Euler’s constant. Conse-

quently, for large values of α we have the approximation E(HI) ≈ ln(α+1)+

0.58.

7.4.3 Estimation

Fisher did not attempt explaining why abundances seemed to follow the

highly skewed gamma distribution. Actually, the way he evaluated uncer-

tainties in his proposed estimator for α indicates that he viewed the gamma

model purely as a descriptive tool, giving a realistic description of variation

in abundance among species. Uncertainties in his variance estimates were

conditioned on species abundances following this pattern, so that the only

source of uncertainty was the Poisson sampling.

In 1950 F.J. Anscombe explored the estimation problem using the multino-

mial distribution for the number of species with different number of individ-

uals in the sample. Hence, in contrast to Fisher, Anscombe also included

the stochastic variation among species in the underlying abundances. Quite

remarkably, he found that the number individuals and species observed were

jointly a sufficient statistic for estimating Fisher’s α, the estimation equation

for α being S/α = ln[(N + α)/α] (exercise 15), which is also the estimation

equation originally proposed by Fisher. That is, if the observed individual

and species number are known, then no additional information is contained in

the observed abundances, indicating a kind of ’neutralitiy’ in Fisher’s model.

The parameter w in the logarithmic series αwn/n given by w = ν/(ν+ρ) can
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Figure 7.2: The data set shown in Fig.7.1 (bars) together with the fitted

logarithmic series model (filled circles). The estimates obtained by Fisher’s

method are α̂ = 20.05 and ŵ = 0.99831.

be estimated by observing that the expected abundance of a random species

is E(νy) = νk/ρ, which means that the expected number of individuals is

sνk/ρ approaching να/ρ under Fisher’s limit. Estimating this quantity by

the observed total number of individuals N is equivalent to estimating ν/ρ

by N/α and consequently estimating w by N/(N + α), which also was the

estimator proposed by Fisher. Fig.7.2 shows the same data as in Fig.7.1

together with the estimated log series sequence of expectations E(zn).

Sampling and statistical inference in the neutral model of Crow and Kimura

were analyzed by Ewens as well as by Karlin and McGregor in 1972. Their

approach is somewhat more complex than Anscombe’s approach to Fisher’s

model. Actually, Ewens considered a sample size of n individuals as given,
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implying that the multivariate distribution of counts for different alleles are

dependent. Nevertheless, Ewens found in agreement with Anscombe that

the number of different alleles in the sample is a sufficient statistic for the

estimation of the parameter M = 4Neu corresponding to Fisher’s α.

The exact multivatiate distribution of observed numbers for all alleles in the

sample, usually called Ewens sampling formula, was conjected by Ewens and

proved by Karlin and McGregor in 1972. The probability of having S =
∑
zj

different alleles in the sample with z1, z2 . . . , zn representatives was found to

be

P (S, z1, z2 . . . zn) =
n!MS

1z12z2 . . . nznz1!z2! . . . zn!
∏n
i=1(M + i− 1)

, (7.1)

where n =
∑
jzj is the number of alleles sampled. Accordingly, the maximum

likelihood estimate of M is the solution of the equation (exercise 16)

S/M =
N∑
i=1

(M + i− 1)−1. (7.2)

Since the sum on the left side is approximately ln[(N +M)/M ] (exercise 17),

the estimator is approximately the same as the estimator found by Fisher

and Anscombe, the difference being that Ewens conditioned on n.

7.4.4 Hubble’s neutral model

The neutral community model of Hubbell is a meta-community model, deal-

ing with the species abundance distribution in the total community as well

as in local communities. The basic idea is that the dynamics of species abun-

dances are described exactly as in the neutral infinite allele model. What in

genetics is ’genetic drift’ is in community ecology called ’ecological drift’, the

stochasticity in change in species abundance being purely demographic. Since

the meta-community is assumed to be very large, changes due to demographic

stochasticity will necessarily be very slow. Local communities, however, are

smaller and consequently have much faster changes. This makes it realis-

tic to consider species abundances being constant in the meta-community
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under investigation of species dynamics in local communities. This assump-

tion is realistic when the local community is only a small fraction of the

meta-community.

In addition to assuming neutral dynamics in the meta-community, there is

an assumption of a connection to the local community by migration. Hubbell

has described this system starting with Ewen’s sampling formula as model

for the total community. However, as Hubbell points out, when the meta-

community is large, we can as well just use the frequency spectrum of Fisher’s

model assuming that the expected number of species with relative abundance

in (q, q + dq) is f(q)dq = αq−1(1 − q)α−1. The parameter α corresponds to

4Neu in the neutral genetic model with 2N alleles, where Ne is the effective

population size and u is the mutation rate. When applying this to ecological

drift using Fisher’s model, Fisher’s diversity parameter is accordingly given

by

α = 2Nu/σ2
d

where N is the community size, u is the speciation rate, and σ2
d is a common

demographic variance for the species in the community. Hence, the effective

population size in the genetic model is replaced by N/σ2
d in accordance with

our treatment of genetic drift in chapter 5. The ecological drift of species

frequencies in the meta-community is then given by the infinitesimal variance

q(1− q)σ2
d/N which is approximately zero for a large N .

Now, following the idea of Hubbell, but using diffusion and continuously

distributed abundances, we consider a local community of size n much small

than N . The ecological drift of a relative abundance p in this community

is defined by the infinitesimal variance ν(p) = p(1 − p)σ2
d/n. The simplest

approach is to consider this as just a single island that is so small that it

does not affect the large mainland community. Below we also consider the

situation where the meta-community consists of k such local communities.

In that case we do not automatically obtain a consistent model unless we

adjust the parameter α that will then be determined by the dynamics in all

local communities.
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Let us first consider the local dynamics of a species with relative abundance

q in the meta-community and p in the local one. The expected fraction of

individuals migrating from the island is mp, where m is a migration rate

assumed to have the same value for all islands and all species. The total ex-

pected number of individuals migrating within the meta-community is mNq,

and a fraction n/N of these is assumed to migrate to the island giving a

mean increase mq in the relative abundance on the island. Consequently,

if we assume that the speciation rate u is much smaller than the migration

rate m, we may ignore the speciation at the island, giving the infinitesimal

mean for the relative abundance process µ(p) = −m(p − q). Also assuming

that the stochastic effect of the migration is much smaller than that of the

ecological drift we can approximate the variance by the above infinitesimal

variance ν(p). The diffusion for p then have the stationary beta-distribution

(exercise 18)

g(p; q) =
Γ[τ ]

Γ[τq]Γ[τ(1− q)]
pτq−1(1− p)τ(1−q)−1

where τ = 2mn/σ2
d, with mean value q. This leads to the joint frequency

spectrum for p and q being g(p; q)f(q). The interpretation of this spec-

trum is that the expected number of species with relative abundance in the

meta-community in (q, q + dq) and in the local community in (p, p + dp) is

g(p; q)f(q)dpdq.

The frequency spectrum for the local community is then

fL(p) =
∫
g(p; q)f(q)dq. (7.3)

Notice that we have not used the form of the function f(q) in this deriva-

tion of the local spectrum fL(p), so this formula, transforming the meta-

community spectrum to the local one, is general and can be applied to any

species abundance distribution for the meta-community. Although we have

used an approach that is somewhat different from Hubbell’s, utilizing diffu-

sion theory, equation (7.3) contains one major finding of Hubbell, that f(q)
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and fL(p) are different distributions. Hubbell found that when f(q) is cho-

sen as Fisher’s model describing a neutral community, the species abundance

distribution for the local community would tend to look more like Preston’s

lognormal distribution. This is depicted in Fig.7.3 where we have illustrated

how the frequency spectrum on the log scale x = ln p, which is exfL(ex),

is affected by isolation of the local community. For large migration rates

m the spectrum is indistinguishable from the Fisher model describing the

meta-community, that is, fL(p) ≈ f(p). As the migration rate decreases, the

curves tend to look more like Preston’s lognormal model, that is, like a Gaus-

sian curve on the log scale. The smallest log frequency shown corresponds

to about three individuals of a species in the local community and the areas

under the curves are therefore approximately the expected number of species

in the local communities.

Now consider the case where the meta-population consists of large number of

k islands of size n, so that N = kn. We also make the assumption of purely

long-distance random migration in the sense that a migrating individual is

equally likely to end up in any local community. Then, in order to obtain a

consistent model we must ensure that the ecological drift in the total com-

munity actually is the drift generated by the assembly of all islands. Since

the meta-population abundance is the mean of local abundances, q = p̄, the

variance of ∆q must be

var(∆q) = var(∆̄p) = k−2
∑

var(∆pi) ≈
σ2
d

nk
E[p(1− p].

Using the beta-distribution of p at islands we find that E[p(1 − p)] = q(1 −
q)τ/(τ + 1) (exercise 18). Hence, the parameter in Fisher’s model for the

meta-community must be

α =
2Nu(τ + 1)

σ2
dτ

.

From equation (7.3) we can also study how the expected diversity of the

local community is affected by local community size and migration, an effect

determined by the parameter τ = 2mn/σ2
d. It follows from the above result
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Figure 7.3: The frequency spectrum on the log scale exfL(ex) for island under

varying migration rates m. The other parameters are N = 107, n = 104,

u = 10−6, and σ2
d = 1. Under large migration α = 20. For small migration α

is slightly adjusted to give consistency. For m = 0.001 we have τ = 20 and

α = 19.05. The area under the curves is approximately the expected number

of species in the local community.
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for Ep(1 − p) that Simpson’s index for the local community is E(HS,L) =
τ
τ+1

E(HS), where HS is the index for the meta-community (exercise 19).

So, with the parameters used in Fig.7.3 the smallest migration rate shown

(m = 0.001) only makes the index about 5% smaller than its value in the

meta-community. This is because Simpson’s index is a dominance index and

the isolation of the island mainly affects the large number of rare species and

have little effect on those dominating the community.

Using equation (7.3) we can also find the expected value of the information

index in the local community (exercise 21)

E(HI,L) =
∫

[Ψ(τ + 1)−Ψ(τq + 1)]α(1− q)α−1dq

which is shown in Fig.7.4. We see that this index, which is more sensitive

to species number, is rather strongly affected by isolation compared to the

effect on Simpson’s index.

To study the same kind of problem for islands of different size or for more

realistic migration pattern is very complex. For example, one will need to

specify how the migration parameter depends on the size of the island. For

small islands individuals are more likely to migrate to a location outside than

for a very large island, where a migration very well may end up inside the

border of the island.

7.5 Independent species dynamics

Neutral models describe community dynamics through several rather strong

assumptions. First, all growth rates are assumed to be zero as there is no dif-

ferences between species and the total community size is kept constant. This

means that all temporal changes in species abundances are purely stochastic.

The growth rates are zero regardless species abundance, that is, there is no

density-regulation. Furthermore, the stochasticity driving species abundance

fluctuations is identical for all species. Another important assumption is that

the dynamics is driven by demographic stochasticity only.
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Figure 7.4: The expected value of the information index on islands as func-

tion of the parameter τ = 2mn/σ2
d (solid lines) for different values of Fisher’s

diversity index α for the meta-community. The dashed lines show the infor-

mation index for the meta-communities.
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Although some of these assumptions may be realistic for some communities

such as tropical trees, most communities have species known to be regulated

by their own density. Also, estimation of population dynamical parameters

has shown that even rather similar species may show differences in dynamics,

with different growth rates at small densities as well as different carrying ca-

pacities. Most studies of communities using species abundance distributions

deal with communities with large species richness. These large communities

also have a very large number of individuals. We have seen in chapter 1 that

stochastic fluctuations then mainly are driven by the environment so that

even very large populations can show fluctuations that are large relative to

its size. For example, a population of N = 106 individuals and demographic

variance σ2
d = 1 will after a period of 100 years only have a variance in pop-

ulation change during that period of approximately 100Nσ2
d = 108, which

means that the standard deviation is only 1% relative to its initial size. It is

highly unlikely that populations show that kind of stability in size over such

a long period, so neutral theory is likely to underestimate the changes in the

abundant species. Environmental stochasticity, however, is known to have

the same relative effect on population fluctuations for all population sizes. If

we assume that the above population has environmental variance σ2
e = 0.01,

the variance in the change during the same period is 100N2σ2
e = 1012, so that

the standard deviation is 100% relative to initial population size.

In the following sections we present some alternative descriptions of dy-

namical species abundance models including environmental stochasticity and

density-dependence. These are, however, also based on a number of simplify-

ing assumptions, such as for example independent dynamics of the species in

the community. We first consider homogeneous models, that is, the species

are interchangeable in the model, all being described by the same parame-

ter value. In 7.7 we generalize this approach to heterogeneous communities

where the parameters are considered to have a given random variation among

invading species.

The assumption of independent dynamics may at first seem rather unre-
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alistic. However, a strong common density regulating effect of the total

community size ensuring small fluctuations in the overall density of indi-

viduals tends to wipe out common noise terms and make species dynam-

ics approximately independent. Let us first illustrate this by an analogy.

Consider the diffusion approximation to the Gompertz type of population

model for a single species with environmental and demographic variance,

dN = rN(1 − lnN/ lnK)dt + σeNdBe + σd
∑
dBi, where dBe and the dBi

are independent Brownian motions and the sum runs over all individuals.

Choosing K = 1000, σ2
d = 1 and σ2

e = 0.01, a large r = γ lnK will corre-

spond to strong density regulation given by γ and the population will show

small fluctuations around K. These fluctuations can be studied by ignoring

σ2
d because σ2

eK
2 is much larger than the demographic contribution σ2

dK for

N close to K. One way of looking at these population fluctuations with a

small stationary variance σ2
e/(2γ) on the log scale, is to realize that the large

fluctuations generated by σ2
e are immediately canceled by the large density

regulation. However, considering the contributions to the next generation

from two different species, their demographic components are still indepen-

dent and much larger than their environmental components. As the demo-

graphic components altogether have practically no effect on the stochastic

change in population size, the density regulation does not affect these com-

ponents in the same way as the environmental components are affected, and

they remain approximately independent as in the case of no density regula-

tion.

Returning to communities the analogy of species and individual in the above

example is now community and species. The analogy of environmental vari-

ance affecting all species is a common environmental noise term affecting

all species, while the analogy of demographic noise is environmental noise

terms that are independent among species. To illustrate our conjecture on

approximately independent dynamics we consider a community with large

species richness. It is then unlikely that the abundance of one single species

will have a major effect on another species. However, all the other species
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together are likely to affect a single species, adding up the possible small

effect of each of them. Let s be the number of species and Ni the individual

numbers, i = 1, 2 . . . , s, so that the total community size is N =
∑
Ni. Let

X = (X1, X2, . . . , Xs) be the vector of log abundances Xi = lnNi. As an

illustration consider the model on the form E(∆Xi|X) = ri − γXi −D(X),

that is, species have different growth rates but are density regulated by its

own density and the total community vector. Adding noise we write this as

a continuous model

dXi = ri − γXi −D(X) + σEdA+ σedBi

where dA and the dBi are independent Brownian motions. The parameter

σ2
E is an environmental effect common to all species, while σ2

e denotes the

magnitude of environmental effects that are independent among species. The

mean value X̄ then have the dynamics

dX̄ = r̄ − γX̄ −D(X̄) + σEdA+ σedB̄

while the dynamics of the deviations Yi = Xi − X̄ is

dYi = ri − r̄ − γYi + σe(dBi − dB̄).

We now make the assumption that the mean value is strongly density reg-

ulated through the term D(X). A consequence of this is that X̄ only show

small fluctuations. Approximating X̄ by its mean µ̄ and inserting Yi = Xi−µ̄
in the above equation then gives the approximation

dXi = (ri − r̄ + γµ̄)− γXi + σe(dBi − dB̄).

For a species rich community the terms dB̄ has variance s−1dt and can there-

fore be ignored compared to dBi having variance dt. Finally, redefining ri as

the previous ri − r̄ + γµ̄, the dynamic equations are

dXi = ri − γXi + σedBi.
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Comparing this to the initial equation for the dynamics of Xi we see that our

assumption of a strong density regulation for the mean X̄ had the effect that

D(X) ≈ σEdA. This can be understood intuitively as follows: The single

species noise terms dBi are independent and will, by the law of large numbers,

have little effect on dX̄ compared to the common term dA. The assumption

of a strong density dependence for the mean ensures that the mean changes

little. Consequently, the common environmental effect of σEdA is canceled

by the density regulation given by D(X). As a consequence, for strong

density dependence of the total community, the assumption of independent

dynamics of species driven by the environment may be rather realistic. The

environmental noise term, however, is not the total environmental effect on

the species, but only the species specific components that are independent

among species.

We have seen that neutral theory was inspired by the theory for neutral

genetic drift. The above model, where changes are driven by environmen-

tal stochasticity affecting all individuals of a species in the same way, can

in a similar way be compared to the theory of fluctuating selection. Tem-

poral fluctuations in selection coefficients affect all individuals with a given

genotype, corresponding to the environmental effect on species.

7.6 Homogeneous community models

7.6.1 Colonizations and extinctions

In chapter 6 we have used the two-dimensional inhomogeneous Poisson pro-

cess to model spatial distribution of individuals. The process was defined by

its intensity, which could be interpreted as the density of points. The Poisson

process is characterized by the fact that the number of points in two disjoint

areas are independent Poisson variates with mean values equal the integral

of the intensity function over the area.

Here we shall use the same inhomogeneous Poisson process, defined on the
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real line rather than in space, in two different ways. First, the process will

be applied to describe the colonization or speciation process, points on the

line representing new species entering the community. Secondly, we use the

same type of process to define species abundance models at a given time.

Then, points on the positive real axis generated by an inhomogeneous Poisson

process represent the species abundances in the community.

We consider a very large community without interactions with its surround-

ings so that all new species are actually generated by an evolutionary spe-

ciation process. We assume that new species appear in time according to

an inhomogeneous Poisson process with intensity ω(t). Hence, speciations

occurring in non-overlapping time segments are independent events, and the

probability of a new species appearing in (t, t + dt) is ω(t)dt. Assuming a

constant intensity ω may be realistic, but it is not required for showing that

abundances follow an inhomogeneous Poisson process.

Let us consider the distribution of species abundances at time t = 0. Let

Ω1 and Ω2 be two disjoint intervals and let Pi(t) be the probabilities that a

species invading at time −t has abundance in Ωi, i = 1, 2, at time zero. Let

Xi be the number of species that invaded in (−t,−t+ dt) with abundance in

Ωi at t = 0 and write q(x1, x2) = P (X1 = x1, X2 = x2). Then q(1, 0) =

P1(t)ω(−t)dt, q(0, 1) = P2(t)ω(−t)dt and q(0, 0) = 1 − P1(t)ω(−1)dt −
P2(t)ω(−t)dt. The joint moment generating function of (X1, X2) is accord-

ingly

Mt(u1, u2) = E(eu1X1+u2X2) = 1 + ω(−t)dt
2∑
i=1

Pi(e
ui − 1)

and the cumulant generating function is

Kt(u1, u2) = ω(−t)dt
2∑
i=1

Pi(e
ui − 1).

Finally, adding the contributions from all past time intervals (−t,−t + dt),

and assuming that the species in the community have independent dynam-

ics, yields the cumulant generating function for the number of species with

abundance in Ω1 and Ω2 at time zero as
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K(u1, u2) =
2∑
i=1

(eui − 1)
∫ ∞

0
ω(−t)Pi(t)dt.

This is the joint cumulant generating function for two independent Poisson

variates with mean values
∫∞

0 ω(−t)Pi(t)dt. Accordingly, as our two intervals

were arbitrary and disjoint, the abundances at time zero and accordingly

at any time, must follow an inhomogeneous Poisson process. This theory

covers the case of continuous species abundances, as must be assumed when

adopting diffusion theory, as well as the discrete case when abundances for

example are the individual counts 0, 1, 2.... In the last case the number of

species with abundance equal any non-negative integer is Poisson distributed.

We see that this theory leads to the assumption of independent Poisson

variates used by Anscombe to find estimators for the parameters in Fisher’s

model, as outlined in exercise 15.

7.6.2 Homogeneous diffusion models

We now assume that species enter the community with abundance x0 = a+δ

(for example 2) and go extinct at abundance a (for example 1) and that

their dynamics are defined by a diffusion process with infinitesimal mean

and variance µ(x) and ν(x) respectively.

We further assume a constant rate ω of new species and let each species have

the dynamics defined so that the population size fluctuates around some

quasi-stationary equilibrium and finally goes extinct. The community will

then eventually reach stationarity with long term balance between speciations

and extinctions. It follows from the derivation in the previous section that

the species abundances at any time then follow an inhomogeneous Poisson

process. This kind of dynamics is illustrated schematically in Fig.7.5.

It remains to derive the rate λ(x) of the inhomogeneous Poisson process.

We have seen from our general derivation that the number of species with

abundance in the interval Ω is Poisson distributed with mean
∫

Ω λ(x)dx =



7.6. HOMOGENEOUS COMMUNITY MODELS 249

Time 

0

1

2

3

4

5

6

7

8

Lo
g 

 p
op

ul
at

io
n 

si
ze

Figure 7.5: Schematic presentation of log population trajectories with speci-

ations and extinctions. The simulated model is homogeneous and the time

scale is arbitrarty.
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ω
∫∞

0 P (t)dt where P (t) is the probability that a species entering at time

zero has abundance in Ω at time t > 0. Now, P (t)dt is the expected time

this species has abundance in Ω during the time interval (t, t + dt). Hence∫∞
0 P (t)dt is the expected total time the species has abundance in Ω which,

in a diffusion model, is the integral of the Green function over Ω. Hence∫
Ω
λ(x)dx = ω

∫
Ω
G(x, x0)dx.

Since the integrands are non-negative and the equivalence holds for any in-

terval Ω we can conclude that

λ(x) = ωG(x, x0).

The inhomogeneous Poisson process has the property (exercise 22) that if the

number of points in Ω is N , then the location of the N points conditioned on

N = n are n independent observations from the distribution λ(x)/
∫

Ω λ(u)du.

Choosing Ω as the interval (a,∞), we see that the distribution of species

abundance in the community given the number of species at a given time is

f(x) = G(x, x0)/T

where T =
∫∞
x0
G(x, x0)dx is the expected time a species stays in the commu-

nity. Hence, in this model the species abundance distribution f(x) is simply

the quasi-stationary distribution of species abundance.

For an extinction barrier at a an initial value x0 = a+ δ we have for a small

δ that S(x0) = S(a) + s(a)δ = δ when the lower integration limits are chosen

at a and S(x) and s(x) are the functions used to express the Green function

in chapter 3. This gives in the limit as ω →∞ and δ → 0 so that ωδ → ω0

λ(x) =
2ω0

ν(x)s(x)
. (7.4)

If δ approaches zero and ω is kept finite we see that all paths goes to extinction

immediately since λ(x) then also approaches zero. This is due to the fact the

diffusion paths show large local fluctuations over short time steps, so with
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initial value very close to the extinction barrier practically all paths will go

extinct immediately. If the speciation rate is defined as the rate at which

new species entering at abundance a+ δ reach abundance a+ ε > a+ δ, then

the speciation rate is in the limit as δ → 0 is ωδ/ε (exercise 23). This means

that ω0 is approximately the speciation rate for ε = 1, that is, for example

the rate at which new species reach abundance 2 when the extinction barrier

is at a = 1.

Inserting the definition of the function s(x) we find

λ(x) =
2ω0

ν(x)
e2
∫ x
a
µ(u)/ν(u)du.

We see that the shape of the species abundance distribution for this class of

models strongly depends on the form of the density-regulation defined by the

infinitesimal mean.

When dealing with distribution of relative abundance among species we have

previously used the term ’frequency spectrum’ for the function f(p) defined

so that f(p)dp is the expected number of species with relative abundance in

(p, p+ dp). Since λ(x)dx is the expected number of species with abundance

in (x, x + dx), it could naturally be called the ’abundance spectrum’. We

shall occasionally use this term together with the term ’Poisson rate’ which

is more generally used for inhomogeneous Poisson processes.

The homogeneous gamma model

Consider now the model with logistic density regulation and constant demo-

graphic and environmental variance, that is, µ(x) = rx − βx2 and ν(x) =

σ2
ex

2 + σ2
dx, and let a = 1. The carrying capacities in the corresponding de-

terministic model are then K = r/β. Equation 7.4 then leads to the Poisson

rate

λ(x) = bx−1(x+ c)2r(1+cβ/r)/σ2
e−1e−2βx/σ2

e , (7.5)

where

b =
2ω0e

2β/σ2
e

σ2
e(1 + c)2r(1+cβ/r)/σ2

e
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Figure 7.6: The frequency spectrum for log number of individuals, that is

eyλ(ey) as function of log individual number (log abundance) y = lnx for

different values of σ2
d for the homogeneous logistic model with environmental

and demographic stochasticity. The other parameters are ω0 = 0.1, r = 0.01,

σ2
e = 0.01, and β = 10−6, giving K = 104.
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and c = σ2
d/σ

2
e . Fig.7.6 shows this abundance spectrum on the log scale, that

is eyλ(ey) as function of y = lnx, for different values of the demographic

variance σ2
d. The curves are skew to the right as the curves for the local

community in the neutral model. The area under the curves represents the

expected number of species. We see that an increase in demographic variance

dramatically reduces the species richness.

In view of Fig.7.6 it may seem very wrong to ignore demographic variance.

However, if we are dealing with very large communities all species that appear

in the samples, even if only by a single individual, will have a large number of

individuals in the community. However, the speciation and extinction rates

has to be adjusted in order to include the effect of demographic variance.

First, consider the model without such an adjustment, choosing a = 1. With

σ2
d = 0 the Poisson rate is then proportional to the gamma distribution

λ(x) =
2ω0e

2β/σ2
e

σ2
e

x2s/σ2
e−1e−2βx/σ2

e ,

where s = r − σ2
e/2 is the stochastic growth rate of each species at small

densities. Hence, the species abundance distribution is the gamma distribu-

tion with shape parameter k = 2s/σ2
e and scale parameter 2β/σ2

e with mean

approximately Ks/r = s/β, censored at the smallest possible abundance 1.

This Poisson rate is approximately proportional to the rate in equation 7.5

for large abundances, that is, for x much larger than c = σ2
d/σ

2
e . So, if we

want to use the gamma model as an approximation, ignoring species that are

very rare and unlikely to be sampled, the rate should be adjusted by a factor

so that the two rates are approximately equal for large abundances. In other

words, we approximate the rate given by equation 7.5 by a gamma model,

which is a good approximation for species that are not very rare. Using the

assumption of a very large community (K large) so that β = s/K is small,

the Poisson rate becomes approximately

λ(x) =
2ω0

σ2
e(1 + σ2

d/σ
2
e)

2r/σ2
e
x2s/σ2

e−1e−2βx/σ2
e . (7.6)
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Remembering that the gamma-distribution of species abundances correspond-

ing to this abundance spectrum was used by Fisher to derive his logarithmic

series distribution, we see that we actually get Fisher’s model for s = 0.

Accordingly, Fisher’s abundance model for large communities may also be

generated by a model with environmental and demographic stochasticity in

contrast to the infinite allele model with only demographic stochasticity.

The expected total abundance of all species in the community is E
∑
x ≈∫

xλ(x)dx which is approximately (1 + σ2
d/σ

2
e)
−1ω0/β for s = 0, provided

that we can approximate the integral from 1 by a lower integration limit

at zero. This is a valid approximation if β is small. For s = 0 we must

then require that β is much smaller than σ2
e/2 = r, which means that K is

much larger than 1, which is an assumption we have already made. Defining

rescaled abundances x(1+σ2
d/σ

2
e)β/ω0, the expected sum of these abundances

are one. Then, we have seen before that the scale parameter in the gamma-

distribution is actually Fisher’s α, that is

α =
ω0

(1 + σ2
d/σ

2
e)β

2β

σ2
e

=
2ω0

σ2
e + σ2

d

≈ 2ω0

σ2
d

.

This result also has common features with the result α = 2Nu/σ2
d in the

ecological application of the infinite allele model. Fisher’s parameter is pro-

portional to the speciation rate in both cases, and inversely proportional

to the demographic variance. A major difference, however, is that α de-

pends strongly on the community size N in the infinite allele model, and will

approach infinity as N increases. In the homogeneous model with environ-

mental and demographic stochasticity, however, there is no dependence on

the community size, except that we have assumed that the carrying capaci-

ties are large. Although β determines the expected size of the community, it

only appears in the scale parameter of the gamma model and will therefore

have no effect on the frequency spectrum for relative abundances defining

Fisher’s α.

The two models are very different when it comes to estimating speciation

rates. Consider a community where α has been estimated from data. The
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speciation rate in the homogeneous model then becomes ω0 = ασ2
d/2 and for

the neutral model u = ασ2
d/(2N). Hence, for extremely large communities

(large N) such as communities of tropical butterflies or beetles, the neutral

model leads to an extremely small speciation rate.

Choosing α = 20 and σ2
d = 1 we find from the homogeneous model that ω0 =

10, which means that 10 new species enter the community each year. This

may seem a very large rate, but most of these species are likely to go extinct

very soon and have abundances so small that they are never seen in practice.

If we for example require that a species should have n representatives in the

community before we consider it as established, the rate will be ασ2
d/(2n)

(exercise 24), so in the above numerical example with n chosen as 100 there

are on average 10 years between speciations, while the event that new species

reach the abundance of 1000 only occur once in 100 year. This also underlines

the importance of a precise definition of speciation. This result, that a large

number of new species formed will never reach abundance above some few

individuals before they almost immediately go extinct, has an interesting

analogy in genetics that will be treated in some detail in chapter 8. Using

a rather simple model C.B.S. Haldane showed in 1927 that new beneficial

mutations with a small advantage s > 0 (multiplicative growth rate 1 + s)

will reach fixation in the population with probability approximately 2s. That

is, a fraction 1 − 2s of the mutations will go extinct, and most of them will

go extinct after only a few generations. Therefore the rate of fixation of

beneficial genes will be much smaller than the rate of mutation. This is an

analogy to the above result that most new species, with no or only a small

advantage relative to the rest of the community, will go extinct during some

few generations.

Now let us assume Poisson sampling, that is, the number of individuals rep-

resenting a species with abundance x in the sample is Poisson distributed

with mean νx, where ν is a measure of sampling intensity. The numbers zj,

j = 1, 2, . . . of species with j representatives in the sample are the indepen-

dent Poisson variates (exercise 25) with means proportional to the terms of
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Figure 7.7: The expected information index E(HI) in the gamma model as

function of the shape parameter k = 2s/σ2
e for different values of α = 2ω0/σ

2
d.

a negative binomial distribution. Accordingly, the observed abundances is a

sample from the truncated negative binomial distribution (exercise 26)

pj =
k(1− w)k

1− (1− w)k
Γ(k + n)

Γ(k + 1)j!
wj, j = 1, 2, . . . (7.7)

where k = 2s/σ2
e and w = ν/(ν + 2β/σ2

e). Notice that this is a well defined

distribution also for negative shape parameters k > −1. This means that

species may invade and lead to a stationary model even if they have negative

stochastic growth rates. However, k = 2s/σ2
e must be larger than −1, that is,

the corresponding deterministic growth rate r = s + σ2
e/2 must be positive.

The parameters k and w can be estimated by maximum likelihood using the

above zero-truncated negative binomial distribution.
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For this extended negative binomial species abundance distribution with k >

−1, including Fisher’s model with k = 0, one can show that the frequency

spectrum is

f(p) =
Γ(α + 1)

Γ(k + 1)Γ(α− k)
pk(1− p)α−k−1.

leading to the expected value of Simpson’s index (exercise 27)

E(HS) = 1− k + 1

α + 1

and the expectation of the information index shown in Fig.7.7 (exercise28)

E(HI) = Ψ(α + 1)−Ψ(k + 1).

The homogeneous lognormal species abundance model

It is known from chapter 3 that the Ornstein-Uhlenbeck process has normal

stationary distribution and by a transformation it is equivalent the model

with Gompertz type of density-regulation and constant environmental vari-

ance having the lognormal stationary distribution. This indicates that the

Gomperz type of density regulation will lead to the lognormal species abun-

dance distribution. For this model it is preferable to work on the log scale

y = lnx, using infinitesimal mean and variance µ(y) = s−γy and ν(y) = σ2
e ,

where s = r−σ2
e/2 is the stochastic growth rate at small densities. Choosing

the extinction barrier at a = 0 on the log scale we find from equation 7.4

λ(y) =
2ω0

σ2
e

es
2/(γσ2

e)e
− 1

2
(y−s/γ)2

σ2e/(2γ) (7.8)

which is proportional to the normal density truncated at y = 0. Hence, the

corresponding species abundance distribution is the lognormal distribution

truncated at x = 1. From this we find the expected number of species

ES =
∫ ∞

0
λ(x)dx =

2ω0

σ2
e

es
2/(γσ2

e)
√
πσ2

e/γΦ(s
√

2/γ/σe)

where Φ(·) is the cumulative standard normal distribution.
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As for the gamma model the effect of introducing a demographic variance

can be investigated by choosing ν(x;σ2
d) = σ2

e +σ2
de
−x. The Poisson rate can

then be evaluated by numerical integration. In Fig.7.8 this rate is shown for

three different values of σ2
d for a model with weak density regulation. Notice

that the curves are close to the normal distribution even for σ2
d = 1, the

effect of increasing σ2
d being mainly a decrease in the number of species in

the community. Since the speciation rate ω0 is a factor in λ(x) the number of

species is also proportional to this parameter. This means that it will be hard

in practice to separate the effects of σ2
d and ω0. This also indicates that it may

be a useful approach to work with the model with σ2
d = 0 that gives exactly

the (truncated) normal distribution of log abundances, as long as we realize

that it is impossible to estimate ω0 from that model. Actually, ω0 needs

to be chosen very small in order to compensate for the lack of demographic

stochasticity that would have driven many rare species to extinction.

Provided that practically the whole normal distribution of log abundance

is above zero so that the truncation at zero can be ignored, the mean and

variance can be estimated by maximum likelihood under the assumption of

Poisson sampling using the Poisson lognormal distribution. This distribution

is in general terms defined as

pi = E

(
Qi

i!
e−Q

)
,

for i = 0, 1, ..., where lnQ is normally distributed with mean µ and variance

σ2, or

pi(µ, σ
2) =

∫ ∞
−∞

e(µ+σu)i

i!
e−e

µ+σu 1√
2π
e−u

2/2du,

where u = (lnQ − µ)/σ is the standardization of lnQ. This is the Poisson-

lognormal distribution with parameters (µ, σ2). The special case σ2 = 0 is

simply the Poisson distribution with mean eµ.

Over-dispersion in the sampling relative to the Poisson distribution can be

modeled by introducing a variable V ensuring that lnV is normally dis-

tributed with mean −θ2/2 and variance θ2 so that EV = 1. The values of
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mental variance σ2
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V are independent between species and samples and the number of individ-

uals observed of a species with abundance x = ey are Poisson distributed

with mean νxV , when conditioned on V . The unconditional mean is then

νx but the variance is larger than the mean, increasing with θ2. The distri-

bution of the number of individuals among species in the sample is now the

Poisson-lognormal distribution with parameters (x+ ln ν − θ2/2, θ2).

Applying this sampling distribution to to the lognromal model given by equa-

tion 7.8 with mean η = s/γ and variance ρ2 = σ2
e/(2γ) and writing zi for the

number of species with i representatives in the sample, we find (exercise 29)

Ezi = pi(η + ln ν − θ2/2, ρ2 + θ2)ES.

As for the gamma model the observed abundances constitute a sample from

the corresponding zero-truncated distribution pi/(1 − p0). The parameters,

η+ln ν−θ2/2 and ρ2 +θ2 of this distribution can then be estimated by max-

imizing the likelihood function numerically. So, in order to find the parame-

ters η and ρ2 of the abundance distribution we need to have some estimates

of the over-dispersion θ2 as well as the sampling intensity ν. The expected

number of species in the community, ES, can be estimated as S/(1 − p0),

where S is the observed number of species.

7.7 Heterogeneous models

We have seen that there are two very different approaches to analyzing the

distribution of species abundances in communities. The first one, introduced

by R.H. MacArthur, was the niche theory, where species divide the available

recourses between them according to their competitive ability. The relative

abundances of species are then determined by all traits that act together

to determine the carrying capacity of each species. Ignoring stochastic fluc-

tuations in species abundance through time, the set of relative abundances

are then just carrying capacities relative to the total carrying capacity of
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the community. The second approach was the neutral theory, where every

temporal change in species abundances are purely random, actually pure

ecological drift determined only by demographic stochasticity. There are no

carrying capacity for a given species and no differences in traits that make

their dynamics differ. The total community size, however, is kept constant,

so there is a density dependence acting on the total number of individu-

als in the community. The homogeneous models presented in the previous

section included environmental stochasticity as well as density regulation,

but was still based on the assumption of all species having the same kind

of dynamics. Apparently, none of these approaches can be quite realistic

descriptions of communities since species are known to have different traits

affecting their dynamics, as well as often being subject to rather large tem-

poral fluctuation that most conveniently are described by environmental as

well as demographic stochastic terms. Now we define a class of dynamic

stochastic abundance models that are naturally classified between the two

above most extreme types, including the niche concept indirectly by open up

for species having different dynamics and different carrying capacities, but

also including temporal stochastic fluctuations in species abundance.

Suppose that species entering the community do not have the same dynamic

parameters, but a set θ of parameters generated independently at invasion for

each species by some distribution π(θ). Then, the speciation rate for species

with θ in some small (multidimensional) region (θ, θ + dθ) is ω0π(θ)dθ. The

abundance of these species at time t = 0 then follow an inhomogeneous

Poisson process with rate, say λ(x; θ)π(θ)dθ = (ω0π(θ)dθ)G(x, x0; θ), where

G(x, x0; θ) is the Green function for the diffusion with parameters θ. Since

Poisson processes are additive, the Poisson rate is the sum of the Poisson

rates for all θ (exercise 30), which in the continuous case is

λ(x, x0) =
∫
λ(x, x0; θ)π(θ)dθ. (7.9)

Fig.7.9 shows a schematic presentation of some pathes in such a heteroge-

neous model. This type of model can be used to study the effect of het-
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Figure 7.9: Schematic presentation of log population trajectories with speci-

ations and extinctions. The simulated model is heterogeneous and the time

scale is arbitrarty.

erogeneity in dynamic parameters, a heterogeneity determined by variation

in traits among species. For example, even closely related species are often

known to have rather different growth rates and density regulation, as well as

different demographic and environmental variances. This makes it possible

to study a number of different types of species abundance models. Here we

illustrate this by considering the heterogeneous lognormal abundance model

generated by normally distributed growth rates among species. Some other

examples are left as exercises (31 and 32).

The heterogeneous lognormal model

Now we choose θ in equation 7.9 as the stochastic growth rate s in equation
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7.8 and assume that species entering the community has stochastic growth

rates generated from a normal distribution with mean s0 and variance τ 2.

This leads to the Poisson rate (exercise 32) on the log scale

λ(y) =
2ω0

σ2
e

es0η/σ
2
ee−(y−η)2/(2ρ2), (7.10)

where η = ψs0/γ, ρ2 = ψσ2
e/(2γ) and ψ = [1 − 2τ 2/(γσ2

e)]
−1. This model

is stationary only if τ 2 ≤ 1
2
σ2
eγ. Otherwise, the number of species and indi-

viduals in the community will approach infinity. However, as we have dis-

cussed previously in this chapter, the overall density regulation of the total

community size will necessarily regulate the parameters so that stationarity

requirement is fulfilled.

Although the distribution of s among invading species is normal with mean s0

and variance τ 2, the distribution of s among species present in the community

is different. This is due to the fact that the value of s strongly affects the

lifetime of the species. Species with a large stochastic growth rate are more

likely to stay in the community for a long period of time. It turns out

(exercise 34) that the distribution of s in the community is still the normal

distribution, but with mean s0ψ and variance τ 2ψ. Both of these parameters

are larger than the corresponding parameters at invasion.

The carrying capacity of a species with stochastic growth rate s is K = es/γ,

which is lognormally distributed among species at invasion as well as in the

stationary community. Using well known properties of the lognormal distri-

bution we find that even the coefficient of variation of K among species is

larger in the community than at invasion (exercise 35). The fact that nature

tends to select the species with the largest fitness can here be interpreted as

choosing those with large values of s through this parameter’s effect on the

time to extinction. The above result shows that this ’selection process’ does

not necessarily reduce the heterogeneity of the community, and may actu-

ally make the community much more heterogeneous than the heterogeneity

recorded at invasion.
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7.8 Species area curves

7.8.1 Introduction

More than 20 years before Fisher’s log series model was published, the

botanists H.A. Gleason and O. Arrhenius investigated community patterns

by plotting the number of plant species recorded within areas of different size

against their size. Typically, the number of species increases with the size of

the area, and two different mathematical curves were soon proposed, species

number and log species number, respectively, being proportional to log area.

These initial contributions were based on choosing areas within a much larger

area containing the total community. Accordingly, one can claim that the

areas are a kind of random samples of areas within the community. However,

since species do not distribute themselves at random but may show large de-

gree of clustering as we have discussed in chapter 6, different species having

small and large density at different locations, these samples are not random

samples of individuals from the community. Random samples of individuals

will produce somewhat different curves, sometimes called rarefaction curves.

Even the sampling of areas may be performed in different ways that may give

somewhat different curves. One may start with a small sample and enlarge

this by adding new areas to it, or one may sample many different disjoint

areas of different sizes. A fourth way of producing curves of species number

increasing with area or individual number relates to subdivided populations,

such as for example island. Curves are then produces by plotting species

number of each sub-population against its area or individual number.

The first attempt to establish a mathematical connection between the species

abundance distribution and the species-individual curve was done already in

Fisher’s original paper in 1943. He showed that the curve based of ran-

dom sampling of individuals, such as the sampling by many light traps as

performed by his colleges, led to a number of recorded species being ap-

proximately proportional to the log of the number of individuals sampled.

A number of large empirical studies based on different sampling techniques
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has later been performed by ecologists, and many theoretical models have

been prosed to explain observed patterns. Here we consider a few such mod-

els, including some that relate to the stochastic theory of species abundance

distributions.

One problem related to these curves is how to estimate the total number of

species in the community. Since most communities of interest are extremely

large, one can only hope to find a small fraction of its individuals in samples.

This fact, combined with the empirical observation that one usually find a

large number of species that are rare with only one or two individuals in the

samples, makes this problem very difficult. Fisher’s model, for example, says

that the number of singletons actually stays constant approximately equal to

α as the sample size increases, all the time revealing species not previously

observed. The parameter α may sometimes be as large as 40. Although

modeling of species abundance distributions is important in trying to reveal

the true number of species, estimates of species numbers will always remain

rather uncertain. The uncertainty is a combination of statistical standard

errors in the estimator of species number and the uncertainty in what is the

correct shape of the left tail of the species abundance distribution.

Although it is extremely difficult to estimate the number of species, it is

possible to get a rather reliable estimate of the total abundance of the species

not represented in the sample. To se this we consider a community with

s species with relative species abundances p1, p2, ..., ps and assume Poisson

sampling. Then, the number of representatives of species i, i = 1, 2, ..., s,

in the sample, are independent Poisson variates Xi with mean νpi, where

ν now is the total expected number of individuals in the sample, ν = EN .

Accordingly, N is an estimator of ν.

Let Ii be an indicator of the event that species i is not represented in a large

sample, while Ji indicates that it is represented by exactly one individual.

Then, the unknown total abundance of unobserved species, which we want to

predict, is the stochastic variable U =
∑
piIi. Now, the variable Û =

∑
Ji/ν

has the same mean as U (exercise 36). Accordingly
∑
Ji/N = z1/N , where
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z1 is the number of singletons in the sample, can be used to predict U . In

order to assess the uncertainty in this prediction we evaluate the variance of

(Û − U), which turns out to be σ2 = (2Ez2 + Ez1)/ν2 (exercise 37), which

can be estimated by σ̂2 = (2z2 + z1)/N2. Hence, an approximately 95%

prediction interval for the total relative abundance of the unobserved species

is [z1/N − 2σ̂, z1/N + 2σ̂].

7.8.2 Rarefaction

The simplest species-individual curves are the so-called rarefaction curves

produced by calculating the expected number of species in a random sub-

sample of size, say n, from a real sample of size N ≥ n. This gives an estimate

of the species-individual curve under random sampling of individuals from

the community because the sub-samples are also random samples from the

community, but the computations are only feasible for n ≤ N . Let the

number of individuals in the sample be X1, X2, . . . , XS, all of which are at

least one,
∑
Xi = N , and let Ji be an indicator of the event that species i is

represented in a sub-sample of size n and write Sn =
∑
Ji for the number of

species in the sub-sample. Then

EJi = P (Ji = 1) = 1− P (Ji = 0) = 1−

(
N−Xi
n

)
(
N
n

)
giving the expected number of species

E(Sn) = S −
S∑
i=1

(
N−Xi
n

)
(
N
n

) .

Notice, however, that this is not the expected number of species in a random

sample of size n from the community, but the expectation conditioned on

the real sample. Hence, unconditionally it is an unbiased estimator of the

number of species in a random sample of size n. Using the same technique

we can calculate the variance of Sn given the sample (exercise 38), but again,

this is not the variance of the estimator but the conditional variance given

the sample.
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7.8.3 Observed species number under random sam-

pling using abundance models

Now consider the abundance model with Poisson rate λ(x), that is, the num-

ber of species in the community with abundance in the interval (x, x + dx)

is λ(x)dx. Further, we assume Poisson sampling with intensity ν so that

a species with abundance x is represented by a Poisson distributed number

of individuals in the sample with mean νx. Using the previous notation zj

for the number of species with j representatives in the sample, the zj are

independent Poisson variates with means

E(zj) =
∫ ∞
a

(νx)j

j!
e−νxλ(x)dx,

where a is the extinction barrier. The number of species in the sample is also

Poisson distributed, with mean

E(S) =
∫ ∞
a

(1− e−νx)λ(x)dx, (7.11)

while the expected number of individuals sample is E(N) = ν
∫∞
a xλ(x)dx. If

the abundances are scales so that the total expected abundance of all species

in the community is one, then E(N) = ν, in which case ν can be estimated

by N .

This species-individual curve takes a simple form for the gamma model with

a = 0. Scaling the total abundance to having unit expectation we have for

k > −1 and α > 0

λ(x) =
αk+1

Γ(k + 1)
xk−1x−αx.

Performing the integration (exercise 39) then gives for k 6= 0

E(S) =
α

k

[
1− αk

(α + ν)k

]
(7.12)

and
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E(S) = α ln
(
α + ν

α

)
(7.13)

for k = 0. Now, replacing ν by its estimate N we see that the expected num-

ber of species is approximately proportional to log number of individuals for

Fisher’s model (k = 0) when the sample size is large. For shape parameters

k between −1 and 0 we see that the expected number of species is approxi-

mately proportional to N−k for large samples. Hence, in the case of random

sampling of individuals, the gamma model explains the linear logarithmic

relationship being approximately α lnN for k = 0 and the the linear rela-

tionship in a double logarithmic plot being approximately αk+1/(−k)N−k for

−1 < k < 0.

For other models such as for example the lognormal species abundance model,

the curves produced under random sampling can be evaluated by numerical

integration.

7.8.4 Island size curves

The dynamic models we have presented earlier, the neutral model with local

communities as well as the homogeneous and heterogeneous models with en-

vironmental stochasticity and density regulation, are all models that can be

used to calculate the (expected) number of species. However, the problem

that needs to be resolved in order to derive species-area or species-individual

curved is to find realistic descriptions of how the parameters in the models

depends on the area. For example, it seems realistic to assume that the

stochastic growth rate s at small densities is not affected by area. This

assumption may also be realistic for the environmental and demographic

variance. The two parameters most likely to be affected is the strength of

density regulation and the speciation or invasion rate.

Hubbell’s neutral model

Fig.7.3 shows examples of the abundance spectrum for Hubbell’s neutral

model. The area under these curves are the expected number of species in
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Figure 7.10: The solid lines are species-individual curves, expected number

of species ES against log local community size lnn, for Hubbell’s neutral

model. The curves are given for three different values of the parameter α

in Fisher’s model describing the total meta-community. The dotted lines

are the corresponding curves for random sampling of the same number of

individuals from the meta-community, that is ES = α ln[(α + n)/α] with

slope approximately equal to α for large values if n. The other parameters

are N = 107, σ2
d = 1, and m = 0.001.
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the local community. Hence, by numerical integration we can easily find the

expected number of species as function of the size n of the local community.

Some examples of such curves, showing the expected number of species as

function of lnn, are shown in Fig.7.10.

Notice that the curves are approximately straight lines with slope α for rel-

atively large values of n. This is the same kind of linear relationship that

Fisher found under random sampling of individuals from the total commu-

nity, which was E(S) = α ln[(α + N)/α]. It appears from the graph that

the curves has the same slope approximately equal to α, but the curves for

random sampling have much larger number of species for the same num-

ber of individuals. This may be understood intuitively by observing that

Hubbell’s local community is a kind of random sampling of individuals from

the meta-community. Actually, the new individuals entering the local com-

munity constitute such a sample, but the species dynamics, especially the

rare ones, will lead to a large number of local extinctions. Accordingly, we

should expect the species number to be much smaller than under random

sampling, as demonstrates in Fig.7.10.

The homogeneous gamma model

In the gamma model, for example, with infinitesimal mean rx−βx2 = rx(1−
x/K), with K = r/β, the area is a major limitation of resources. Therefore,

we must expect that the carrying capacity K increases with increasing area.

As long as we keep the stochastic growth rate s = r − σ2
e/2 constant, the

density-regulating parameter β in this model must decrease with area.

A complete modeling, however, require that we also include information

about how area affect the invasion rate. Most likely, the rate will increase

slightly with area, but only extensive data on invasion that is very hard to

find, can tell what is a realistic functional relationship. Here, we only con-

sider models with constant rates. However, it will appear from the derivation

that any functional form for the invasion rate can easily be used to derive

mode general relationships.
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Figure 7.11: Species individual curves for the gamma model given by equation

7.5 in a double logarithmic plot. The curves are generated by varying the

parameter β determining the carrying capacities of each species. The curves

are shown for some different values of the environmental variance σ2
e . The

other parameters are r = 0.01, σ2
d = 0.5, and ω0 = 0.1. The extinction

barrier is chosen at a = 1.
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The derivation of species-individual curves under the assumption that only

the density-regulation depends on the area is very simple in principle. The ex-

pected number of species E(S) =
∫
λ(x)dx and individuals E(N) =

∫
xλ(x)dx

both depends on the parameter determining the density-regulation and the

hence carrying capacities. Therefore, simply by varying this parameter only,

pairs of numbers [E(S),E(N)] can be found defining E(S) as function of

E(N). In Fig.7.11 we show such curves in a double logarithmic plot produced

from the gamma model with environmental and demographic stochasticity

producing the Poisson rate given by equation (7.5) using extinction barrier

at a = 1.

Notice that the curves look approximately as straight lines over rather large

ranges of N , for example over ranges in ln(N) of about 2.3 corresponding to

a 10-fold change in N . The slope of these curves is in the range 0.2 to 0.4

which is quite typical for slopes estimated from empirical data.

The homogeneous lognormal model

Fig.7.12 shows species individual curves in a double logarithmic plot for the

homogeneous lognormal model produced in the same way as for the gamma

model. It appears that the curves are approximately straight lines and the

slope is approximately the same for different values of σ2
d. This, together

with a number of other numerical calculations, suggests that we can analyze

the slope using the simplified model with no demographic stochasticity given

by equation (7.8), or the corresponding heterogeneous model with normally

distributed stochastic growth rates among species given by equation (7.10).

The heterogeneous lognormal model

Now considering equation (7.10) for the Poisson rate in the heterogeneous

lognormal model and introducing the parameter δ = γ − 2τ 2/σ2
e the Poisson

rate takes the form

λ(y) =
2ω0

σ2
e

es
2
0/(δσ

2
e)e−(y−s0/δ)2/[2σ2

e/(2δ)],

which is equivalent to the rate in the homogeneous model given by equation

(7.8) with the stochastic growth rate s replaced by the mean s0 and γ replaced
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Figure 7.12: The upper curve is the species individual curves for the ho-

mogeneous lognormal model given by equation 7.8 in a double logarithmic

plot. The curves are generated by varying the parameter γ determining

the strength of density regulation. The other parameters are s = 0.01,

σ2
e = 0.001, and ω0 = 0.1. The three lower graphs shows the same curves for

three different values of the demographic variance. The extinction barrier is

chosen at a = 1.
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by δ. The mean and variance in this Gaussian function are η = s0/δ and

ρ2 = σ2
e/(2δ). Since the strength of density-regulation only affects δ, the

species-individual curves for the heterogeneous model can be produced simply

by varying δ. The mean number of species in the community is

ES =
∫ ∞

0
λ(x)dx =

2ω0

σ2
e

es
2
0/(δσ

2
e)
√
πσ2

e/δΦ(η/ρ),

while the mean number of individuals is

EN =
∫ ∞

0
exλ(x)dx =

2ω0

σ2
e

es
2
0/(δσ

2
e)
√
πσ2

e/δe
(s0+σ2

e/4)/δΦ(η/ρ+ ρ).

To find an expression for the slope in the double logarithmic plot we use the

variable κ = − ln δ so that η = s0e
κ and ρ2 = σ2

ee
κ/2. We can now study the

relation between ES and EN as κ, and hence the density regulation given

by γ, varies. Expressing ln ES and ln EN by η, ρ2 and κ and observing that

dη/dκ = η, dρ2/dκ = ρ2, and then using the fact that η/ρ2 does not depend

on κ, we get (exercise 39)

d ln ES

dκ
=

1

2

[
1 + η2/ρ2 +G(η/ρ)

]
and (exercise 41)

d ln EN

dκ
=

1

2

[
1 + η2/ρ2 +G(η/ρ+ ρ)

]
+ η +

1

2
ρ2.

Here G(x) = xφ(x)/Φ(x) where φ is the standard normal density, that is,

the derivative of Φ. From this we find the slope

z =
d ln ES

d ln EN
=

1 + η2/ρ2 +G(η/ρ)

1 + η2/ρ2 +G(η/ρ+ ρ) + 2η + ρ2
. (7.14)

An interesting conclusion from this derivation is that the slope in the double

logarithmic plot depends on the parameters in the heterogeneous lognor-

mal model only through the mean and variance of the underlying normal

distribution of log abundances. Rather surprisingly, information about the

heterogeneity parameter τ 2 is not required. Therefore, since the mean and
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variance can be estimated from one single observation from a community

by fitting the zero-truncated Poisson lognormal model, then also z can be

estimated. We have previously seen that this requires that we have informa-

tion about the sampling intensity as well as a possible over-dispersion in the

sampling relative to the Poisson distribution.

7.8.5 Curves produced by quadrat sampling

In chapter 6 we studied the spatial distribution of individuals. The simplest

model for a given species is given by the homogeneous Poisson process, that

is, the underlying density is constant in space and individuals are randomly

scattered according to the given density of the species. If all species in the

community are described by this simple model, then for any species the num-

ber of individuals within any given area will be Poisson distributed with mean

value proportional to its density as well as the area. Accordingly, the number

of species within an area can be considered as a Poisson sample of individuals

from the community with a given sampling intensity. Increasing the area has

the same effect as increasing the sampling intensity. As a consequence, the

species-individual curves produced by varying the area are exactly the curves

we earlier have produced by random sampling of individuals.

On the other hand, if there is spatial variation in population densities de-

scribed by a spatial auto-covariance function so that individuals to some ex-

tent are clustered in space, the curves will necessarily be different. However,

it is difficult to make general models that cover all the different possibili-

ties. For example, species with different abundances may not have the same

type of spatial scaling. Here we exemplify by considering Fisher’s model and

the extended gamma model for the overall mean density and assuming that

the spatial coefficients of variation and autocorrelations are the same for all

species.

Let x|µ(z), z = (z1, z2), denote the mean abundance of a species at location

z where µ(z) is a stochastic spatial field with mean Eµ(z) = 1. Accordingly,
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the abundance x is scaled so that it is the expected number of individuals in

a unit area. Notice that this assumption makes the coefficient of variation of

density, as well as the spatial scaling, the same for all species. Assuming an

inhomogeneous Poisson process for the location of individuals, the number

of individuals of a species with abundance x within an area A is Poisson dis-

tributed with mean W = x
∫
A µ(z)dz = xU for a given µ(z). For a randomly

chosen area, however, U will have some distribution , say f(u|A) depending

on the stochasticity of the field µ(z). The expected value of U =
∫
A µ(z)dz

must be A because the field has mean 1. Writing σ2 for the variance of

µ(z) we have seen in chapter 6 that the variance of U is σ2A2ρ̄(A), where

ρ̄(A) is the mean spatial correlation between for two points chosen at ran-

dom within A. The probability that this species is present in A is therefore∫
(1− e−ux)f(u|A)du, giving the mean number of species in A for this spatial

model

ESspatial(A) =
∫ ∫

(1− e−ux)f(u|A)λ(x)dudx. (7.15)

For homogeneous pattern with µ(z) = 1 we have simply U = A and the

corresponding species-area curve is simply the same as the curve produced

by random sampling of individuals as pointed out above. With the whole

probability mass of U at A equation (7.15) is the same as equation (7.11) with

sampling intensity ν = A. Hence, writing ES(ν) for the the expected number

of species in the sample under random sampling of individuals expressed by

equation (7.11), we find

ESspatial(A) =
∫

ES(u)f(u|A)du,

where f(u|A) denotes the distribution of
∫
A µ(z) depending of the properties

of the field µ(z). This expression is the sum of the expected contributions

from each species and is therefor unaffected by a possible dependence between

species. We arrive at the same expression for the curves when the fields µ(z)

are independent or dependent among species. The variance of the species
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number found in areas of given sizes is, however, depends strongly on the

covariances between the indicator variables for the presence of each species.

Now, consider Fisher’s model with the species-individual curve given by equa-

tion (7.13) as an example. Using the second order Tailor expansion around

u = A we have

ESspatial(A) ≈ α ln
(
α + A

α

)
− ασ2A2ρ̄(A)

2(α + A)2
.

The factor A2/(α + A)2 in the last term increases from zero to 1 as A in-

creases, while ρ̄(A) usually decreases from 1 toward zero. Consequently, for

areas smaller than some intermediate value A∗ the curve has smaller slope

than the curve produced by random sampling, while the slope is large for

values above this. This is related to the concept of β-diversity. We see that

the value A∗ depends on the spatial scaling of the density field µ(z). The spa-

tial effect is demonstrated in Fig.7.13 using a Gaussian form for the spatial

autocorrelation of µ(z) and a function ρ̄(A) computed for squares A using

equation (6.11). We see that the spatial aggregation of individuals makes

the curve have small slope in the beginning and a large slope when ln(A)

becomes larger than about ln(l2), where l is the standard error of for the

correlation function scaled to integrate to one. Notice that the coefficient of

variation in the spatial variation of µ(z) here is as large as
√

3, which means

that the densities of all species are very small in some areas and quite large

in others.

Using the same approach for the random sampling curve from the extended

gamma model with approximately linear relation in a double logarithmic plot

for large areas A given by equation (7.12), we find

ESspatial ≈
α

k

[
1−

(
α

α + A

)k]
− αk+1σ2A2ρ̄(A)

2(α + A)k+2

which is exemplified in Fig.7.14. Notice that the curves in the case of spatial

patchiness are very close to straight lines for ln(A) between 5 and 9. However,

they have much larger slopes than the line for random sampling, which has
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Figure 7.13: The second order approximation to the species area curve when

the spatial correlation for the density of all species is of the Gaussian form

ρ(r) = e−r
2/(2l2), where r is the distance. The solid line is the species area

curve for constant densities for Fisher’s model given by equation (7.13). The

dashes line is the curve for scale l = 10, and the dotted line for scale l = 30.

The corresponding vertical lines are at ln(A) = ln(l2). The other parameters

are σ2 = 3 and α = 30.
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Figure 7.14: The second order approximation to the species area curve when

the spatial correlation for the density of all species is of the Gaussian form

ρ(r) = e−r
2/(2l2), where r is the distance. The solid line is the species area

curve for constant densities for the extended gamma model with k = −0.5

given by equation (7.12). The dashes line is the curve for scale l = 10, and

the dotted line for scale l = 30. The corresponding vertical lines are at

ln(A) = ln(l2). The other parameters are σ2 = 3 and α = 20.
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slope −k = 0.5 for large areas. This indicates that large slopes found over

large ranges in empirical studies may to some extend be a result of spatial

segregation, that is, a result of β-diversity.

7.9 Temporal and spatial analysis of similar-

ity

7.9.1 Introduction

In the introduction to this chapter we defined Jaccard and Sørensen’s index

for similarity between two communities. Since these two indices, that actu-

ally are equivalent, are based on counting the number of species in the two

communities, it is obvious from our previous discussion of species-area curves

that the estimation of the indices from samples must be difficult due to many

unobserved rare species in both communities. On the other hand, if we know

that the community can be described by a certain species abundance model,

the number of species can be estimated by fitting a species abundance distri-

bution taking the sampling into account, and calculate the number of species

from the estimated parameters in the model. This indicates strongly the pos-

sibility of also relating indices of similarity like Jaccard and Sørensen’s index

in some way to abundance distributions, which we discuss further in 7.9.4.

Let (xi, yi), i = 1, 2...s be the abundances of species i in two communities,

either two communities at the same time but at different locations, at dif-

ferent times at the same location, or different times at different locations.

When dealing with abundance models we have considered (x1, x2, ...xs) as

well as (y1, y2, ...ys) as samples from a distribution, which is called the species

abundance distribution. These samples, however, are not in general indepen-

dent. If the time differences and spatial distances between the communities

are small, the two-dimensional species abundance distribution of (xi, yi) is

a bivariate distribution expected to have large correlation. In statistics the

correlation is the most widely used measurement for quantifying the similar-
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ity between samples like this. Consequently, any measurement of correlation

can be used as index of similarity between two communities described by

species abundance distributions.

Below be return to the heterogeneous lognormal model and discuss contribu-

tions to the correlation between abundances on the log scale from correlations

between noise terms, heterogeneity, density-regulation and migration. This

decomposition of the variance in the lognormal model can be utilized to

perform statistical analysis of spatial and temporal community data.

7.9.2 Spatio-dynamical species abundance models

The heterogeneous lognormal species abundance model given by equation

(7.10) was derived by assuming that the stochastic growth rates of species

were generated by a normal distribution at speciation/colonization. The

stochastic growth rates for the resident species when stationarity is reached

is also normal, although the parameters are different (exercise 33). Since

speciations are rare, we now assume stationarity and ignore speciations and

extinctions during some time interval under investigation. Then consider a

site z = (z1, z2) with log abundance x(t, z) for some species at time t, and

dynamics given by

dx(t, z) = [s− γx(t, z)]dt+ σedB(t, z)

where dB(t, z) is a temporal Brownian motion specific for site z. The stochas-

tic growth rate s is normally distributed among species with mean, say s0

and variance τ 2 (a redefinition of the notation s0ψ and τ 2ψ in exercise 33),

and the noise terms are independent among species. The noise terms are,

however, correlated in space with correlation depending on the distance be-

tween sites given by E[dB(t, z)dB(t, z+w)] = ρe(w)dt (exercise 42). We have

seen in 6.3.2 that the Moran effect holds for this model so that the stationary

distribution of [x(t, z), x(t, z + w)] is the bivariate normal distribution with

correlation ρe(w) and variances σ2 = σ2
e/(2γ). More generally we may con-

sider the same species at two different times as well as different locations and
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use the assumption that the stochastic growth rates are normally distributed

with variance τ 2. The correlation is then (exercise 43)

ρ(h,w) = corr[x(t, z), x(t+ h, z + w)] =
ρe(w)e−γhσ2 + τ 2

σ2 + τ 2
. (7.16)

7.9.3 Decomposition of the variance

The lognormal model

The correlation ρ(w, h) between two communities can be estimated from data

under the assumption of Poisson sampling or Poisson lognormal sampling

from both communities with over-dispersion parameter θ2 as defined in sec-

tion 7.6.2. This over-dispersion adds a term θ2 to the variance parameter for

both marginal distributions, but have no effect on the covariance. Accord-

ingly, evaluating the terms of the bivariate Poisson lognormal distribution

(exercises 44 and 45) for the data from these two communities, the correla-

tion parameter that can be estimated by maximum likelihood (exercises 46

and 47) is

ρ∗(h,w) =
ρe(w)e−γhσ2 + τ 2

σ2 + τ 2 + θ2
(7.17)

while the variance parameter is

v = σ2 + τ 2 + θ2.

If samples are available from a large number of communities at different

locations and different times, the correlations ρ∗(w, h) can be estimated from

each pair of communities (exercise 47). The variance parameter v can be

chosen as the mean of all estimates of v. The correlation estimates are

preferably smoothed, for example by assuming a parametric form of ρe(w), to

find estimates of γ, ρ∗(0, 0) and ρ∗(z,∞). The decomposition of the common

variance v of the lognormal species abundance distributions, that is, the

components σ2, τ 2 and θ2, are then found from the relations

θ2 = v([1− ρ∗(0, 0)],
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Figure 7.15: Correlation estimates for samples of tropical butterfly commu-

nities from 25 sites over 5 years. The left panel shows correlation estimates

for zero time difference, while the right one has time differences one year.

The estimates are found by maximizing the likelihood function based on the

bivariate Poisson lognormal distribution given in exercises 43-48.
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σ2 = v[ρ∗(0, 0)− ρ∗(z,∞)],

and

τ 2 = vρ∗(z,∞),

following from equation (7.17). The spatial scale of the noise is given by

l = 1/γ. Examples of smoothed estimates are shown in Fig.7.15.

We have in the above analysis assumed a given environmental correlation

in the noise expressed by ρe(r) that alone generates the same equal spatial

correlation in log population size. However, we have seen in chapter 6 that

other effects, in particular migration and permanent spatial heterogeneity,

also may have large effect on the field X(z). This will make the expression

for the correlation, such as the one given by equation (7.16), more complex.

Hubbell’s neutral model

It is impossible to compare the above spatio-temporal results for the log-

normal model to Hubbell’s neutral model because we have no spatial theory

for that model unless we also model distance-dependent migration between

islands. However, it is possible at least to make a comparison with the result

from the pure temporal analysis given by equation (7.16) with w = 0 and

ρe(w) = 1.

In the neutral model the infinitesimal mean for a relative abundance p of

some species in the local community is µ(p) = −m(p−q), where q is its fixed

abundance in the meta-community. Also, due to immigration, the diffusion

for p is stationary. Then we can apply the result for linear infinitesimal means

shown in chapter 3.12, saying that the temporal autocorrelation is simply

ρ(t) = e−mt. This is the autocorrelation for p as well as the absolute variance

x = np because the local community size is assumed to be constant. To find

the unconditional correlation not conditioned on q, we first need to derive the

distribution of q for species that are present in the local community. We can
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find this from the two-dimensional frequency spectrum g(p; q)f(q) discussed

just before equation (7.3), expressing the expected number of species with

relative abundance in (p, p+ dp) in the local community and in (q, q+ dq) in

the meta-community when multiplied by dpdq. Since the smallest abundance

for p indicating presence is 1/n the distribution conditioned on presence is

f ∗(q) = cf(q)
∫ ∞

1/n
g(p; q)dp,

where c it the required scaling factor. Using this distribution for q we find

the unconditional correlation

ρ∗(t) =
σ2e−mt + τ 2

σ2 + τ 2
, (7.18)

where now σ2 = Evar∗(p|q) and τ 2 = var∗(q), where ∗ indicates reference to

the distribution f ∗(q) (exercise 49). Although these are the correlations on

the absolute scale while equation (7.16) refers to the log scale, the functions

appear to have very similar forms. The most interesting difference, however,

is the exponential temporal functions e−γt in the heterogeneous lognormal

model and e−mt in the neutral model. That is, the temporal scale is 1/γ and

1/m, respectively. A rapid decrease will only occur in the lognormal model

under strong density-regulation, while in the neutral model only under large

migration (small degree of isolation from the main community).

7.9.4 Correlation and indices of similarity

We have seen that the correlation parameter in the bivariate Poisson lognor-

mal model can be estimated from data without having any information about

the sampling intensity for the sampling from the two communities. This is a

very important observation because sampling intensities are often unknown,

or partly unknown. In statistics correlations are generally defined for any bi-

variate distribution, so for all two-dimensional species abundance models, we

can use the correlation as an index of similarity. Using the normal distribu-

tion as an approximation when constructing estimates of correlation is also a
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well known technique that usually leads to reliable estimates. The same ap-

proach can be used for communities. Even if the binormal distribution does

not give precise description of the system, a number of empirical studies has

shown that it often is a good approximation. Therefore, fitting the bivariate

Poisson lognormal distribution and using it to estimate the correlation will

rather generally give quite a useful measurement of similarity.

The Jaccard and Sørensen’s indices are often estimated directly from data by

substituting the number of species in the communities by the numbers actu-

ally observed. Estimates obtained in this way are of course very sensitive to

sampling efforts. In order to investigate this in some detail it is convenient

to count species that are ’likely to be observed’ rather than the observed

numbers. This will practically make no difference, but it facilitates the anal-

ysis. We do this by defining a species as likely to be present if its abundance

exceeds a given threshold. Hence, defining thresholds for both communities

there is a unique expected number of species ’likely to be observed’ in both

or in one of the communities corresponding to some unique fractions of re-

vealed species. The Sørensen index was defined as L = 2A/(2A + B + C),

where A was the number of species present in both and B and C the num-

bers present in only one or the other community. Replacing A, B, and C by

the above numbers of species with abundances exceeding the thresholds then

leads to an index not depending on any sampling assumptions other than the

expected fraction of species in the samples.

Returning to the bivariate lognormal species abundance model it is most

convenient to define thresholds referring to standardized log abundances. A

species with log abundance X is likely to be present if U = (X−µx)/σx > α.

The fraction of species exceeding the threshold is then P (U > α) = 1−Φ(α),

where Φ is the standard cumulative normal distribution. Consequently, this

definition of ’presence’ through α refers to a sampling effort expected to

reveal a fraction p = 1 − Φ(α) of the species abundance distribution. In

the same way we define ’presence’ in the other community by β so that

V = (Y −µy)/σy > β, with corresponding fraction q = 1−Φ(β) expected to
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Figure 7.16: Sørensen’s similarity index as function of community correlation

ρ in the bivariate lognormal community model. Definition of the index is here

based on p = q, that is, sampling reveals the same expected fraction of species

in both communities. The curves are shown for different values of p = q.

be seen.

The two-dimensional distribution of (U, V ) among species is the standard

binormal distribution with correlation ρ,

f(u, v; ρ) =
1

2π
√

1− ρ2
e
−u

2−2ρuv+v2

2(1−ρ2)

having marginal distributions with zero means and unit variances. Hence,

with s species altogether the quantities entering the expression for Sørensen’s

index are A = s
∫∞
α

∫∞
β f(u, v; ρ)dudv, B = s

∫∞
α

∫ β
−∞ f(u, v; ρ)dudv and C =

s
∫ α
−∞

∫∞
β f(u, v; ρ)dudv. Inserting these into the expression for L, the species
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number s disappears and the index, say Lp,q, appears to be a function of the

community correlation ρ only (exercise 50)

Lp,q =
2G(α, β; ρ)

2G(α, β; ρ) +G(−α, β;−ρ) +G(α,−β;−ρ)
.

where G(α, β; ρ) = P (U > α, V > β), which can be written as the univariate

integral

G(α, β) =
∫ ∞
β

[1− Φ(
α− ρv√
1− ρ2

)]φ(v)dv.

This index for different thresholds p = q is depicted as function of the commu-

nity correlation ρ Fig.7.16. The special case p = q = 1/2, that is, when one

half of the species is expected to be observed in both communities, Sørensens

index takes the simple form (exercise 51),

L0.5,0.5 = 1/2 + arcsin(ρ)/π

which is zero for ρ = −1, 0.5 for ρ = 0 and 1 for ρ = 1. This function is the

middle line in Fig.7.16.

7.10 Exercises

1. Show that the information index for a given number of s species takes its

maximum value ln s for pi = 1/s, i = 1, 2 . . . , s.

2. Show that Simpson’s index for a given number of s species takes its

maximum value (s− 1)/s for pi = 1/s, i = 1, 2 . . . , s.

3. Show that the information index is unbounded even if there is a dominant

species with relative abundance 0.9.

4. Let Yi be the number of individuals in a sample representing species

i, i = 1, 2, . . . , s,
∑
Yi = N . Under the assumption that (Y1, Y2 . . . , Ys) is

multinomially distributed with parameters (N, p1, p2, . . . , ps), find an unbi-

ased estimator for Simpson’s index.
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Hint: Find first an unbiased estimator for p2
i , using the fact that Yi is bino-

mially distributed.

5. Show that no unbiased estimator exists for the information index.

Hint: Consider a general estimator ĤI(N, Y1, Y2, . . . , Ys) and study the math-

ematical form of its expectation.

6. Consider the diffusion with infinitesimal mean and variance µ(p) = −up
and ν(p) = p(1 − p)/(2Ne) and initial state p0 = 1/(2N). Show that the

Green function is proportional to p−1(1− p)M−1, where M = 4Neu.

7. For a ’frequency spectrum’ f(p) = cp−1(1− p)M−1, show that c ≈M .

8. Show that the expected fraction of homozygotes in the neutral infinite

allele model is 1/(M + 1), where M = 4Neu, and that the expected value of

Simpson’s index for genetic diversity in the same model is M/(M + 1).

9. Let the species abundances y in the community follow the gamma dis-

tribution [ρk/Γ(k)]yk−1e−ρy, and assume that a species with abundance y

is represented by a Poisson-distributed number of individuals in the sample

with mean νy. Then, show that the observed number of individuals for the

species represented in the sample follow a zero-truncated negative binomial

distribution.

10. Derive Fisher’s logarithmic series distribution from the zero-truncated

negative binomial distribution derived in exercise 9.

11. Consider the model in exercise 9 and show that the expected number

of species with n representatives in the sample approaches Fisher’s log-series

αwn/n as the shape parameter k approaches zero and the number of species

s in the community approaches infinity so that ks→ α, where w = ν/(ν+ρ).

12. For the model in exercise 9 show that the marginal distribution of the

relative abundance of a given species is the beta-distribution Γ(α)/[Γ(k)Γ(α−
k)]pk−1(1− p)α−1, where α = ks.

13. Use the result in exercise 12 to show that the ’frequency spectrum’ in

Fisher’s model is the same as in Crow and Kimura’s neutral infinite allele

model.

Hint: Use the relation kΓ(k) = Γ(k + 1).
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14. In order to find E(HI) in Fisher’s model first define the function G(t) =∫ 1
0 p

t(1− p)M−1dp.

Hint: Use the formula
∫ 1

0 x
a−1(1 − x)b−1dx = Γ(a)Γ(b)

Γ(a+b)
and evaluate d

dt
lnG(t)

at t = 0.

15. Assume that the number of species with j representatives in the sample,

j = 1, 2, . . ., are independent Poisson variates with means rj = αwj/j. Show

that the total number of observed species S and individuals N are jointly

sufficient for α and w and that the maximum likelihood estimator of α is

the solution of the equation S/α̂ = ln[(N + α̂)/α̂] and the estimator of w is

ŵ = N/(N + α̂).

16. Find the maximum likelihood equation for M from Ewens’ sampling

formula.

17. Show that the likelihood equation for M from Ewens’ formula is approx-

imately the same as Anscombe’s formula for α in Fisher’s model, that is, the

solution is approximately the solution of S/M̂ = ln[(N + M̂)/M̂ ].

18. Let λ(x) be the intensity of an inhomogeneous Poisson process and let N

be the number of Points in the interval Ω for some realization of the Process.

Show that, conditionally on N = n, the points in Ω are n independent

observations from the distribution λ(x)/
∫

Ω λ(u)du.

19. Show that the stationary distribution for the diffusion with infinitesimal

mean µ(p) = −m(p − q) and variance p(1 − p)σ2
d/n is the beta-distribution

with parameters τq and τ(1 − q), where τ = mn/σ2
d. Find the mean and

variance of this distribution as well as E[p(1− p)].
20. Use the result in exercise 19 to how that the expected value of Simpson’s

index for the local community is the index for the meta-community multiplied

by τ/(τ + 1).

21. Use equation (7.3) to show that the expected value of the information

index on islands in Hubbell’s model is

E(HI,L) =
∫

[Ψ(τ + 1)−Ψ(τq + 1)]α(1− q)α−1dq.

Hint: First find the expected value of −p ln p on the island for a species with

relative abundance q in the meta-community. Use the technique similar to



7.10. EXERCISES 291

that in exercise 14.

22. For an inhomogeneous Poisson process with intensity λ(x) on the interval

[a, b] consider the realization of points x1, x2, . . . , xN . Show that, conditioned

on N , the distribution of x1, x2, . . . , xN is a sample from the distribution

λ(x)/
∫ b
a λ(u)du.

23. Consider a diffusion with initial state x0 = a+δ > a. Find the probability

that the path reaches a + ε > a + δ before reaching a is δ/ε as ε → 0 (and

consequently δ → 0). Let ω be the rate of diffusions starting at a + δ and

let the speciation rate be defined as the rate at which these diffusions reach

a+ ε for the first time. Show that the speciation rate in the above limit then

approaches ωδ/ε.

24. Consider a diffusion model with environmental variance only where the

density regulation is so small that it can be ignored for x < n. If we define

speciation to occur as a new species reach abundance x = n, show that the

speciation rate in the homogeneous gamma model is ω0/n.

25. Under the assumption of Poisson sampling show that the number of

species zj with j representatives in the sample are independent Poisson dis-

tributed variables.

26. Show that the Poisson rate given by equation 7.6 combined with Pois-

son sampling leads to the zero-truncated negative binomial distribution of

observed abundances.

27. Find the expected value of Simpson’s diversity index for the model

defined by equation 7.6.

28. Find the expected value of the information index for the model defined

by equation 7.6.

29. For the lognormal model given by equation 7.8 with mean η = s/γ and

variance ρ2 = σ2
e/(2γ), and sampling given by the Poisson lognormal distribu-

tion with overdispersion parameter θ and intensity ν, show that the expected

number of species with i representatives in the sample, i = 0, 1, ..., is pro-

portional to the terms of the Poisson lognormal distribution with parameters

(η + ln ν − θ2/2, ρ2 + θ2).
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30. Let λi(x), i = 1, 2, . . . n be independent inhomogeneous Poisson pro-

cesses. Show that the set of points generated by all n processes together is

an inhomogeneous Poisson process with rate
∑n
i=1 λi(x).

31. Construct a heterogeneous model from the gamma model given by equa-

tion 7.6 by assuming that the parameter β, expressing the strength of density

regulation, is gamma distributed among species at invasion. Show that the

species abundance distribution then is the beta-distribution of the second

kind, that is

f(x) =
Γ(p+ q)

Γ(p)Γ(q)

bpxp−1

(1 + bx)p+q
.

Find the parameters p, q and b expressed by the parameter of the heteroge-

neous dynamic species abundance model.

32. Construct a heterogeneous model by assuming that the parameter σ2
e in

the model given by equation 7.8 has an inverse gamma distribution among

species at invasion. Show that the resulting species abundance distribution

on the log scale is Student’s T-distribution (the general form where the de-

grees of freedom is not required to be an integer). Find the parameters of

the distribution expressed by the parameters of the underlying dynamical

model. Also find the species abundance distribution on the absolute scale

and compare it to the lognormal distribution.

33. Use equation 7.9 to find the lognormal species abundance model resulting

from assuming that the stochastic growth rate s in equation 7.8 is normally

distributed among species at invasion with mean s0 and variance τ 2.

34. For the model in exercise 32 show that the distribution of s among the

species in the community is normal with mean s0ψ and variance τ 2ψ when

stationarity is reached, where ψ = [1− 2τ 2/(γσ2
e)]
−1.

35. For the model given in exercise 33 show that the coefficient of variation in

the carrying capacities among species is larger when stationarity is reached

than at invasion.

36. Consider a community with relative abundances p1, p2, . . . , ps, and as-

sume that the number of observed species Xi of species i, for i = 1, 2, . . . , s
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are independent Poisson variates with mean νpi. Let Ii be an indicator of

the event that species i is not represented in the sample, and let Ji indi-

cate that it is represented by exactly 1 individual in the sample. Show that

the total relative abundance of unobserved species U =
∑
piIi has the same

expectation as Û =
∑
Ji/ν.

37. For the model in exercise 35 show that var(U − Û) = (2Ez2 + Ez1)/ν2,

where zj is the number of species represented by j individuals in the sample.

38. Consider a sample (X1, X2, . . . XS) of S species from a community (that

is, Xi > 0) and let Ji be an indicator of the event that species i is represented

in a random sub-sample of size n ≤ N . Find an expression for the variance

of the number of species Sn =
∑
Ji in the sub-sample conditioned on the

sample.

Hint: The covariances between the Ji must be included. These can be cal-

culated by using indicator variables for events (Ji = 1, Jj = 1) = (JiJj = 1)

for i 6= j.

39. In order to derive the expected number of species in a random sample

under the extended gamma model first consider E(S) = g(ν) as function of

the sampling intensity ν. Find an expression for the derivative of g(ν) and

evaluate it by integration. Finally use the fact that g(0) = 0 to find the

general expression for E(S) valid for k > −1.

40. In the heterogeneous lognormal model given by equation (7.10) define

κ = − ln δ so that η = s0e
κ and ρ2 = σ2

ee
κ/2. Then show that

d ln ES

dκ
=

1

2

[
1 + η2/ρ2 +G(η/ρ)

]
where G(x) = xφ(x)/Φ(x) and φ is the standard normal density.

41. For the model in exercise 39 show that

d ln EN

dκ
=

1

2

[
1 + η2/ρ2 +G(η/ρ+ ρ)

]
+ η +

1

2
ρ2.

42. Consider two Brownian motions at location z and z + w and assume

that dB(t, z)dB(t, z+w) = ρe(w)dt. Show that ρe(w) then is the correlation

between dB(t, z) and dB(t, z + w).
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Hint: Consider first a discrete time step ∆t. Then go to the limit.

43. Consider Ornstein-Uhlenbeck processes on the form dX(t, z) = [s −
γX(t, z)]dt + σedB(t, z) and correlated noise given by E[dB(t, z)dB(t, z +

w)] = ρe(w)dt. Show that

ρ(h,w) = corr[x(t, z), x(t+ h, z + w)] =
ρe(w)e−γhσ2 + τ 2

σ2 + τ 2

when s is normally distributed with variance τ 2.

44. Assume that the log abundances (X, Y ) of species, is a sample from

the bivariate normal distribution with parameters (µx, µy, σ
2
x, σ

2
y , ρ). Let the

sampling process be given by the Poisson distribution in both communities

so that the number of individuals of a species in the samples, say (Nx, Ny),

under unit sampling effort are Poisson distributed with means eX and eY

when conditioned on the abundances, and define the function

hn(µ, σ2, u) =
exp(uσn+ µn− e−(uσ+µ))

n!
.

Then show that the bivariate Poisson lognormal distribution P (Nx = nx, Ny =

ny) can be written as

q(nx, ny;µ1, σ
2
x, µ2, σ

2
y, ρ) =

∫ ∞
−∞

∫ ∞
−∞

hnx(µx, σx, u)hny(µy, σy, v)f(u, v; ρ)dudv

where f(u, v; ρ) denotes the binormal distribution with zero means, unit vari-

ances and correlation ρ.

45. Consider the bivariate Poisson lognormal model given in exercise 44

but assume that the sampling effort for the two communities are νx and νy,

that is, Nx and Ny are Poisson distributed with means νxe
X and νye

Y when

conditioned on the abundances. Show that the distribution of (Nx, Ny) is

now the bivariate Poisson lognormal distribution q(nx, ny;µx + ln νx, µy +

ln νy, σ
2
x, σ

2
y, ρ).

46. Generalize the sampling model in exercise 44 by assuming that Nx con-

ditioned on the abundance X and a variable V is Poisson distributed with
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mean V νxe
X , where lnV are normally distributed with mean −θ2/2 and vari-

ance θ2 so that EV = 1. The sampling variable V takes independent values

for each Poisson sampling. With the same assumptions for Ny, show that the

bivariate distribution of (Nx, Ny) then is the Poisson lognormal distribution

q(nx, ny;µx + ln νx, µy + ln νy, σ
2
x + θ2, σ2

y + θ2, ρ∗), where

ρ∗ =
ρσxσy√

(σ2
x + θ2)(σ2

y + θ2)
.

47. Use the result in exercise 42-45 to derive equation (7.16).

48. In the one-dimensional case we usually consider the species abundance

distribution truncated by omitting the zero class since the number of species

in this class is unknown. Discuss how unobserved species should be treated

in the estimation procedure in the two-dimensional case.

49. Derive equation (7.18).

50. Derive the expression for Sørensen’s index when the standardized log

abundances for two communities (U, V ) has the standard binormal distribu-

tion with correlation ρ.

Hint: Use P (U > α, V < β) = P (U > α,−V > −β) and the fact and the

symmetry property that (U,−V ) is standard bivariate normal with correla-

tion −ρ.

51. A classical result for the standard bivariate normal distribution, due to

W.F. Sheppard in 1898, is that the probability of an observation taking a

value in the first quadrant is 1/4 + arcsin(ρ)/(2π). Use this result to find an

analytic expression for Sørensen’s index for p = q = 1/2.


