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1 All parameters known

Suppose that X1, X2, . . . , Xk has a multinomial distribution with paramters n and p1, p2, . . . , pk.
The expectation and variance of each Xi is then

E(Xi) = npi, Var(Xi) = npi(1 − pi), (1)

and the covariance between a given Xi and Xj is negative and equal to

Cov(Xi, Xj) = −npipj . (2)

Thus,
Xi − npi√
npi(1 − pi)

(3)

is approximately N(0, 1). Furthermore, it is proved elsewhere that the statistic

D =

k∑
i=1

(Xi − npi)
2

npi
(4)

is approximately chi-square distribution with k− 1 degrees of freedom, provided that all expec-
tations E(Xi) = npi ≥ 5.

To test the goodness of fit of a given null hypothesis of the form

H0 : p1 = p1,0, p2 = p2,0, . . . , pk = pk,0 (5)

we can thus be based on the test statistic

D =
k∑
i=1

(Xi − npi,0)
2

npi,0
. (6)

If the deviation of the observed values Xi from their respective expectations npi,0 under H0 is
large, D will take a large value. We thus reject H0 if D is larger than the upper α quantile of
the chi-square distribution

D > χ2
α,k−1. (7)

Tests of null-hypotheses of this kind where we hypothesize that all pi’s have some particular
value are rare. The so call Benford’s law provide one example. This law typically applies to
positive numerical quantities which follows for example a log-normal distribution and which
vary across many orders of magnitude. For example, the brain size of different land mammals
vary between 0.14 and 5712 grams, that is by more than 4 orders of magnitude. The law states
that the first digit of such numbers follow a distribution where the probability that the first
digit is equal to i is given by

pi = log10(i+ 1) − log10 i. (8)

These probabilities can be computed in R as follows
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> i <- 1:9

> p <- log10(i+1)-log10(i)

> p

[1] 0.30103000 0.17609126 0.12493874 0.09691001 0.07918125 0.06694679 0.05799195

[8] 0.05115252 0.04575749

So most brain sizes (31%) should have 1 as the first digit.
The brain size in gram of the 62 different land mammals (assignment 1) are

> print(mammals$brain)

[1] 44.50 15.50 8.10 423.00 119.50 115.00 98.20 5.50 58.00

[10] 6.40 4.00 5.70 6.60 0.14 1.00 10.80 12.30 6.30

[19] 4603.00 0.30 419.00 655.00 3.50 115.00 25.60 5.00 17.50

[28] 680.00 406.00 325.00 12.30 1320.00 5712.00 3.90 179.00 56.00

[37] 17.00 1.00 0.40 0.25 12.50 490.00 12.10 175.00 157.00

[46] 440.00 179.50 2.40 81.00 21.00 39.20 1.90 1.20 3.00

[55] 0.33 180.00 25.00 169.00 2.60 11.40 2.50 50.40

The number of brains sizes starting with the digit 1, 2, . . . , 9 are

> x <- c(24,7,7,9,7,5,0,2,1)

Under the null hypothesis that Benford’s law applies these counts are a sample from a multino-
mial distribution with parameters n = 62 and p1, p2, . . . , p9 given by (8). Having computed these
probabilities and stored the result in the vector p, the chi-square test of this null hypothesis
based on (6) can be done in R using the chisq.test function

> chisq.test(x,p=p)

Chi-squared test for given probabilities

data: x

X-squared = 10.7747, df = 8, p-value = 0.2148

Warning message:

In chisq.test(x, p = p) : Chi-squared approximation may be incorrect

The observed value of chi-square statistic is close to its expected value of 8 and the large p-value
indicates that we can not reject the reject the null hypothesis.

R gives a warning message because some of the expected values are smaller than 5. These
expected values are available in the $expected component of the list returned by chisq.test

(see the help page)

> chisq.test(x,p=p)$expected

[1] 18.663860 10.917658 7.746202 6.008421 4.909237 4.150701 3.595501

[8] 3.171456 2.836964

We see that the observed values are fairly close to the expected values based on Benford’s law.

2 Unknown parameters

Rather than having some hypothesized value for all the probabilities p1, p2, . . . , pk, we usually
want to test the goodness-of-fit of the null hypotheses H0 that there is a particular mathematical
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relationship between the pi’s. Such relationships can in general be represented by assuming that
p1, p2, . . . , pk are functions of a smaller number of s parameters, that is, that

p1 = p1(θ1, θ2, . . . , θs)

p2 = p2(θ1, θ2, . . . , θs)

...

pk = pk(θ1, θ2, . . . , θs)

(9)

We shall see that we can sometimes easily and sometimes only by numerical methods obtain
maximum likelihood estimates of the unknown s parameters θ1, θ2, . . . , θs from the observed
counts X1, X2, . . . , Xk. Either way, the following important theorem applies. Suppose that the
maximum likelihood estimators of θ1, θ2, . . . , θs are θ̂1, θ̂2, . . . , θ̂s. Under H0, the test statistic

D =
k∑
i=1

(Xi − np̂i)
2

np̂i
. (10)

where
p̂i = pi(θ̂1, θ̂2, . . . , θ̂s) (11)

is then approximately chi-square distributed with k − 1 − s degrees of freedom provided that
np̂i ≥ 5 for all categories i.

2.1 Contingency tables

Testing for independence in a an 2 × 2 contingency table is a special case of a test of a null
hypothesis of the form (9). Suppose that we categorize a sample of n = 61 patients as follows.

Healed Not Healed Total

Pirenzepine 23 7 30
Trithiozine 18 13 31

Total 41 20 61

The counts of number of patients in each of the 4 categories now follow a multinomial distri-
bution. The null hypothesis of independence between medical treatment and healing outcome
means that the four multinomial probabilities are given by

Healed Not Healed Marginal prob.

Pirenzepine p11 = pq p12 = (1 − p)q q
Trithiozine p21 = p(1 − q) p22 = (1 − p)(1 − q) 1 − q

Marginal prob. p 1 − p

that is, four different functions of s = 2 parameters p and q.
Maximum likelihood estimates of p and q can be found be first realising that the total count

of patients which are healed is binomially distributed with parameters p and n under H0. Hence
the maximum likelihood estimate of p is p̂ = 41/61 = 0.6721. Similarly, the maximum likelihood
estimate of q becomes q̂ = 30/61 = 0.4918.

Based on the maximum likelihood estimates of the s = 2 parameters p and q we can compute
the corresponding maximum likelihood estimates p̂11, p̂12, p̂21, p̂22 of the probabilites of obser-
vations in the four different categories by applying the functions given in the above table on p̂
and q̂.

According to (9), given k = 4 categories with associated probabilites being functions of
s = 2 parameters, the statistic

D =

2∑
i=1

2∑
j=1

(Xij − np̂ij)
2

np̂ij
(12)
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is now chi-square distributed with k − 1 − s = 1 degree of freedom.
R carries out tests of this kind if the first argument to chisq.test is a matrix or table

containing the counts.

> x <- matrix(c(23,7,18,13),2,2,byrow=T)

> chisq.test(x)

Pearson’s Chi-squared test with Yates’ continuity correction

data: x

X-squared = 1.6243, df = 1, p-value = 0.2025

> chisq.test(x)$exp

[,1] [,2]

[1,] 20.16393 9.836066

[2,] 20.83607 10.163934

A generalisation of this test to a r× c contingency table would involve s = (r− 1) + (c− 1)
parameters and a total number of k = rc categories. The associated chi-square statistic in this
case thus have

k − 1 − s = rc− 1 − (r − 1) + (c− 1) = rc− r − c+ 1 = (r − 1)(c− 1) (13)

degrees of freedom.
Similarly, the goodness-of-fit chi-square test statistic for complete independence for a three-

way r × c × t contingency table would have rct − r − c − t + 2 degrees of freedom. For three-
way tables many other hypotheses are of interest, however, and can be tested using addon
R-packages.

2.2 Testing Hardy-Weinberg equilibrium

2.2.1 Diallelic loci

Consider a population of a diploid organism and let PAA, PAa, Paa be the genotype frequencies
of the different genotypes at a particular diallelic locus. If we sample n individuals from the
population, the counts XAA, XAa, Xaa of number of individuals of the different genotypes in the
sample will follow a multinomial distribution with parameters n and PAA, PAa, Paa.

The population is said to be in Hardy-Weinberg equilibrium at a diallelic locus if there is a
certain relationship between the genotype frequencies, namely that all the frequencies are the
functions

PAA = p2,

PAa = 2p(1 − p),

Paa = (1 − p)2
(14)

of a single parameter p being the allele frequency of allele A.
A goodness-of-fit test of this null hypothesis can again be based on (10) since the probabilities

of observations in the k = 3 categories again are functions of a smaller number of s = 1
parameters.

It can be shown (see assignment 5) that the maximum likelihood estimator of the allele
frequency p in the population under H0 is simply equal to the frequency of the allele in the
sample, that is, the number of alleles of type A in divided by the total number of alleles (two
times the sample size),

p̂ =
2XAA +XAa

2n
(15)
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For example, if we observe 51, 42 and 7 individuals of genotype AA, Aa and aa in a sample
of n = 100 individuals, the maximum likelihood estimate of the allele frequency of A is p̂ =
(2 · 51 + 42)/200 = 0.72.

We can carry out the test as follows in R. Letting the three elements of the vector X represent
the number of individuals of genotype AA, Aa and aa in the sample, p̂ can be computed as
follows.

> X <- c(51,42,7)

> n <- sum(X)

> phat <- (2*X[1]+X[2])/(2*n)

> phat

[1] 0.72

The correspoding maximum likelihood estimates of the genotype frequencies are given by

> Phat <- c(phat^2,2*phat*(1-phat),(1-phat)^2)

> Phat

[1] 0.5184 0.4032 0.0784

The expected numbers of each genotype nP̂AA, nP̂Aa, nP̂aa become

> n*Phat

[1] 51.84 40.32 7.84

which are not far from the observed values. The observed value of the test statistic based on
(10) is

> D <- sum((X-n*Phat)^2/(n*Phat))

> D

[1] 0.1736111

which is below the expected value of k − 1 − s = 3 − 1 − 1 = 1 degree of freedom. The P -value
of the test is

> pchisq(D,df=1,lower.tail=F)

[1] 0.6769222

so we can clearly not reject the null hypothesis that the population is in Hardy-Weinberg
equilibrium.

2.2.2 More than 2 alleles

This approach can easily be extended to test for Hardy-Weinberg equilibrium at loci with more
than 2 alleles. With three alleles we have k = 6 genotypes,

A1A1, A1A2,A1A3

A2A2,A2A3,

A3A3.

(16)

Under the null hypothesis of Hardy-Weinberg equilibrium, the population genotype frequencies
of these can all be written as functions of at most s = 2 parameters, say the allele frequncies
p1 and p2 of allele A1 and A2 since p3 = 1 − p1 − p2. The frequency of genotype A2A3 is for
example

P23 = 2p2p3 = 2p2(1 − p1 − p2). (17)

Again, the maximum likelihood estimates of the allele frequencies are equal to their re-
spective sample frequencies. From these maximum likelihood estimates, the corresponding
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maximum likelihood estimates of all 6 genotype frequencies, the associated expected values and
the observed value of the test statistic can be computed.

Under H0, this test statistic is again chi-square distributed with k − 1 − s = 6 − 1 − 2 = 3
degrees of freedom.

2.2.3 Incomplete data due to dominance (bolk 10)

Blood type in humans is determined by a triallelic loci with two dominant alleles A, B and one
recessive allele O as follows

i Genotype Phenotype Probability pi Count Xi

1 AA, A0 A p2A + 2pApO 44
2 BB, B0 B p2B + 2pBpO 27
3 AB AB 2pApB 4
4 00 0 p2O 88

Note that the probabilities of observing different phenotypes becomes equal to the sums of the
underlying frequencies of possible genotypes.

The observed counts in the rightmost column is a sample from an African population (Crow
1986, p. 24). The null hypothesis that this population is in Hardy-Weinberg equilibrium can
again be tested based on the general theorem (10) since the the probabilities of the k = 4
observable phenotypes can all be written as functions of s = 2 parameters, say the allele
frequencies of alleles A and B, pA and pB. Provided that we can compute the maximum
likelihood estimates of pA and pB the resulting chi-square distributed test statistic will have
k − 1 − s = 4 − 1 − 2 = 1 degrees of freedom accodring to (10).

The difficulty lies in computing these maximum likelihood estimates. If we treat pA and pB
as the unknown parameters, and keep in mind that p1, p2, . . . , p4 are functions of pA and pB the
likelihood function for the data is

L(pA, pB) =
n!

x1!x2!x3!x4!

4∏
i=1

pxii (18)

and the log likelihood is

lnL(pA, pB) = lnn! −
∑

lnxi! +
4∑
i=1

xi ln pi. (19)

Substituting the expressions for each pi into (19) and setting the partial derivatives with respect
to pA and pB equal to zero leads to a set of two non-linear equations which have no analytic
solution.

The likelihood function can be maximised numerically, however, as follows. We first define
the two following functions.

multinomialprobs <- function(par) {

pA <- par[1]

pB <- par[2]

p0 <- 1-pA-pB

c(pA^2 + 2*pA*p0, pB^2 + 2*pB*p0, 2*pA*pB, p0^2)

}

lnL <- function(par,x) {

n <- sum(x)

-dmultinom(x,prob=multinomialprobs(par),log=T)

}
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The first function computes the probabilities of the four different phenotypes for given values
of the allele frequencies pA and pB (represented by the vector argument par). For example,
for pA = 0.5 and pB = 0 (and hence pO = 0.5) we get, the probabilities of the four different
phenotypes are

> multinomialprobs(c(.5,0))

[1] 0.75 0.00 0.00 0.25

The second function computes the negative log likelihood of the observed data (represented by
the second vector argument x) given particular values of pA and pB (represented by the first
argument, the vector par).

We can now find the maximum likelihood likelihood estimates of pA and pB by minimising
the negative log likelihood function numerically using the optim function.

> x <- c(44,27,4,88)

> fit <- optim(c(.25,.25),lnL,x=x)

> fit

$par

[1] 0.1604618 0.1003531

$value

[1] 6.917786

$counts

function gradient

65 NA

$convergence

[1] 0

$message

NULL

The maximum likelihood estimates are thus p̂A = 0.16 and p̂B = 0.10.
The corresponding estimates of the phenotype probabilities become

> Phat <- multinomialprobs(fit$par)

> Phat

[1] 0.26296987 0.15842973 0.03220566 0.54639474

and the expected number of individuals of each phenotype

> n <- sum(x)

> n*Phat

[1] 42.864089 25.824047 5.249522 89.062342

which, again, is fairly close to the observed counts in the above table. The observed value of
the chi-square test statistic of the goodness-of-fit test becomes

> D <- sum((x-n*Phat)^2/(n*Phat))

> D

[1] 0.3937418

which gives a P value of

> pchisq(D,df=1,lower.tail=F)

[1] 0.53

Hence, we can not reject the null hypothesis that the population is in Hardy-Weinberg equilib-
rium.
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