
Likelihood theory, numerical methods, simulation methods

April 8, 2011

1 Numerical maximization of the likelihood

For many statistical models, closed form expressions for the maximum likelihood estimators can
not be derived. For example, suppose that t1, t2, . . . , tn is a sample from a Weibull distribution
with parameters a and b. The density function for the Weibull distribution is given by

f(t) =
a

b

(
t

b

)a−1
e−(t

b)
a

. (1)

The Weibull distribution can be derived from the assumption that the rate of mortality λ(t) =
(1/b)(t/b)a−1. When the parameter a = 1, the rate of mortality is constant and the models
becomes equivalent to the exponential model. For other values of a, the rate of mortality
either increases or deceases with age. Note that the parameterization used here (and by R) is
somewhat differerent from the parameterization used in notat 2 in ST0103.

Given this model, the likelihood function for the observed data is thus

L(a, b) =
n∏
i=1

a

b

(
ti
b

)a−1
e
−
(

ti
b

)a
(2)

= anb−an
∏(

ti
b

)a−1
e−
∑

(ti/b)
a
, (3)

and the log likelihood

l(a, b) = n ln a− na ln b− (a− 1)
∑

ln ti −
∑

(ti/b)
a. (4)

Noting that
∂

∂a
(ti/b)

a =
∂

∂a
ea ln(ti/b) = ea ln(ti/b) ln(ti/b) = (ti/b)

a ln(ti/b), (5)

and setting the partial derivatives of the log likelihood function l(a, b) equal to zero yields

n

a
− n ln b−

∑
ln ti −

∑
(ti/b)

a ln(ti/b) = 0 (6)

and
− na

b
+
a

b

∑
(ti/b)

a. (7)

These equations are non-linear in the unknowns a and b and no closed form solution can be
found.

The maximum likelihood estimates must therefore instead be computed using numerical
methods. This can by first defining a function in R which computes the likelihood (or the log
likelihood) for given values of the unknown parameters a and b and for a given set of data. We
shall then use a special function in R which finds the parameter values which maximises the
likelihood. This function (the R function optim) works by making repeated calls to a given

1

function for different parameter values. Based on the evaluated value of likelihood at these
parameter values, the optimisation algorithm usually finds it’s way at least to a local maximum
in the parameter space.

Let us start by defining a function in R which computes the likelihood. This should be
a function of the unknown parameters a and b and since the likelihood also depends on the
observed sample t1, t2, . . . , tn we need an additional argument containing the observations. Our
R function may then compute either the likelihood of the log likelihood. In practice, optimisation
on the log likelihood works best. By default, optim minimises the given function. Thus if we let
our function compute the negative log likelihood and minimise this we maximise the likelihood.

Based on equation (4) we can define the likelihood function in R as follows

l <- function(a,b,t) {

n <- length(t)

lnL <- n*log(a) - n*a*log(b) - (a-1)*sum(log(t)) - sum((t/b)^a)

-lnL

}

However, since this function needs to speak to optim in a certain way (see ?optim), it needs
to take a vector containing the parameter values as it’s first argument and not as two scalar
arguments. We let the first element p[1] of the first argument p represent a and the second
element p[2] represent b, and modify the function to

l <- function(p,t) {

n <- length(t)

lnL <- n*log(p[1]) - n*p[1]*log(p[2]) - (p[1]-1)*sum(log(t)) - sum((t/p[2])^p[1])

-lnL

}

or, a somewhat easier to read version,

l <- function(p,t) {

a <- p[1]

b <- p[2]

n <- length(t)

lnL <- n*log(a) - n*a*log(b) - (a-1)*sum(log(t)) - sum((t/b)^a)

-lnL

}

Yet another and probably the preferred way of computing the likelihood is to use R’s built in
function dweibull for evaluting the density function of the Weibull distribtuion. If we use the
vector t containing the observed values as the first argument dweibull will return a vector
containing f(t1), f(t2), . . . , f(tn). The log likelihood is the log of the product of this or sum of
the log of each term. Taking logs after having computed each f(ti), however, should be avoided
since this may lead to numerical underflow. Instead, pass the log=T argument to dweibull.

l <- function(p,t) {

-sum(dweibull(t,shape=p[1],scale=p[2],log=T))

}

Let us first simulate a sample of n = 50 observations simulated from a Weibull distribution
with shape parameter a = 2 and scale parameter b = 10 as follows

tsim <- rweibull(50,shape=2,scale=10)

A histogram of the data and the density function of the true model generated using the com-
mands

2

Histogram of tsim

tsim

D
en

si
ty

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 1: 50 observation simulated from a Weibull model with shape parameter a = 2 and scale
parameter b = 10 (solid curve). The dashed lines represents the maximum likelihood estimate
of the density function (see text).

hist(tsim,breaks=10,prob=T)

curve(dweibull(x,shape=2,scale=10),add=T)

is shown in Fig. 1.
Before proceeding, let’s also make a surface plot the likelihood function. This can be done

using the persp function which is part of the base-package. A more convenient interface to
persp (aswell as image and plot3d in the rgl package) is curve3d function in the package
emdbook. This function takes an expression in x and y, in our case representing the parameters
a and b as it’s first argument. Since l computes the negative log likelihood, exp(-l()) gives
us the log likelihood

library(emdbook)

curve3d(exp(-l(c(x,y),t=tsim)),

xlim=c(1.5,2.5),ylim=c(5,15),

sys="persp",

theta=30,phi=30,

tick="detailed",

xlab="shape parameter a",ylab="scale parameter b",zlab="likelihood")

The other arguments specifies that the plot should be created using persp and the other ar-
guments (specifying perspective etc.) are passed on to persp (see ?persp for details). The
resulting surface plot is shown in Fig. 2. We see that the likelihood has a maximum somewhere
around the true parameter values a = 2 and b = 10.

The maximum likelihood estimates can now be computed by making a call to optim as
follows

> optim(c(1,1),l,t=tsim)

$par

[1] 2.011764 10.230481

$value

3

shape parameter a

1.6
1.8

2.0
2.2

2.4

sc
al

e
pa

ra
m

et
er

 b

6

8

10

12

14

likelihood

0e+00

1e−64

2e−64

3e−64

4e−64

5e−64

Figure 2: Surface plot of the likelihood function for the data shown in Fig. 1.

4

● ●●●●●
●●

● ●
●
● ●

●●
●

●●●●● ●●
●

● ●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●
●●

●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●

0.5 1.0 1.5 2.0 2.5

2
4

6
8

10
12

14

a

b

Figure 3: The trajectory of the optimisation algorithm through the parameter space from the
inital values a = b = 1 towards the maximum likelihood estimates at a = 2.0117 b = 10.2304.

[1] 145.603

$counts

function gradient

83 NA

$convergence

[1] 0

$message

NULL

The first argument to optim is a vector of inital values for the parameters. The second argument
is the name of the function to be minimised. Also note the third argument, t=tsim. This
argument does not match any of optim’s ordinary argument but is instead passed on to l, each
time optim makes a call to l. See ?optim and the defintion of optim for details.

optim works by evaluating the function specified as the second argument (in the above case
l), at different nearby points. Based on the local gradient of the likelihood surface the algorithm
then moves through the parameter space towards a the maximum, which in this case is located
at a = 2.0117 and b = 10.2304. Fig. 3 shows trajactory taken by the algorithm towards this
maximum if using the default optimisation method (method="Nelder-Mead").

Other optimisation methods can be used; when working with log likelihood functions con-
vergence is often faster if using method="BFGS" which is basically a multivariate version of
Newton’s method. For the above example, using this method reduces the number of function
evaluations from 83 to 42.

> optim(c(1,1),l,t=tsim,method="BFGS")

$par

[1] 2.011848 10.228542

$value

5

[1] 145.603

$counts

function gradient

42 14

$convergence

[1] 0

$message

NULL

There were 12 warnings (use warnings() to see them)

> warnings()

Warning messages:

1: In dweibull(x, shape, scale, log) : NaNs produced

2: In dweibull(x, shape, scale, log) : NaNs produced

3: In dweibull(x, shape, scale, log) : NaNs produced

...

The warnings occur because the algorithm used attempts to evaluate the likelihood outside the
permitted ranges of the parameter values, that is, for non-positive values of a and b. In this
particular case, when the likelihood is evaluated outside the permitted ranges for the parameters
a < 0, dweibull produces only a warning and returns NaN (not a number) which propagates
in further computations so that l also returns NaN as value. Both the default method used by
optim ("Nelder-Mead") aswell as ("BFGS") can deal with functions returning Inf, NA or NaN

for parameter values for which the function is not defined.

1.1 Constraints on the parameters

To be on the safe side, we can specify lower and upper limits on a and b (“box constraints”) in
which case optim uses the "L-BFGS-B" method.

> optim(c(1,1),l,t=tsim,lower=c(0,0),upper=c(Inf,Inf),method="L-BFGS-B")

$par

[1] 2.011847 10.228543

$value

[1] 145.603

$counts

function gradient

14 14

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Unlike "Nelder-Mead" and "BFGS", the "L-BFGS-B" method only works on functions which are
always defined inside the box contraints specified. In the above case, certain starting values

6

causes an evaluation at the boundary a = 0 which causes the algoritm to crash since the the
Weibull density function (and hence the likelihood) becomes undefined at a = 0:

> optim(c(.001,1),l,t=tsim,lower=c(0,0),upper=c(Inf,Inf),method="L-BFGS-B")

Error in optim(c(0.001, 1), l, t = tsim, lower = c(0, 0), upper = c(Inf, :

non-finite finite-difference value [1]

In addition: Warning message:

In dweibull(x, shape, scale, log) : NaNs produced

The way around the problem is to use lower boundaries on the parameters slightly larger than
zero.

> optim(c(.001,1),l,t=tsim,lower=c(.0001,.0001),upper=c(Inf,Inf),method="L-BFGS-B")

$par

[1] 1.902166 9.440133

$value

[1] 144.5283

$counts

function gradient

21 21

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

The constraints above can be dealt with by reparameterisation reparameterizing the model in
terms of θ1 = ln a and θ2 = ln b. For a parameter q for which the likelihood is only defined for
0 < q < 1, we may reparameterize the model in terms of θ = logit q and the do the optimisations
with respect to θ, −∞ < θ <∞.

Reparameterization may also be useful for problems involving contraints on the parameters
that can not be dealt with as “box-constraints”. For example, the likelihood function for the
blood type data is only defined for 0 < p1 < 1, 0 < p2 < 1 and 0 < p3 < 1 and

∑
pi = 1.

The latter two condition translates to the constraint p1 + p2 < 1 on the parameters which the
likelihood is maximised with respect to, that is, p1 and p2. Such contraints can be dealt with
by reparameterization of the model in terms of an additive log ratio transformation (Bolker
(2008). This transforms p1, p2, p3 to two new parameters, θ1 and θ2 given by

θ1 = ln
p1
p3
, θ2 = ln

p2
p3
. (8)

After some algebra, we find that the back-transformation is given by

p1 =
eθ1

1 + eθ1 + eθ2
, p1 =

eθ2

1 + eθ1 + eθ2
, p1 =

1

1 + eθ1 + eθ2
. (9)

Using the alternative parameterization of the model given by (8), and letting par represent
(θ1, θ2) instead of pA and pB, the model for the blood type data in handout 2 can be fitted
using as follows without the need for any contraints on the new parameters.

multinomialprobs <- function(par) {

pA <- exp(par[1])/(1+exp(par[1])+exp(par[2]))

7

http://www.amazon.com/Ecological-Models-Data-Benjamin-Bolker/dp/0691125228
http://www.amazon.com/Ecological-Models-Data-Benjamin-Bolker/dp/0691125228

pB <- exp(par[2])/(1+exp(par[1])+exp(par[2]))

p0 <- 1/(1+exp(par[1])+exp(par[2]))

c(pA^2 + 2*pA*p0, pB^2 + 2*pB*p0, 2*pA*pB, p0^2)

}

lnL <- function(par,x) {

n <- sum(x)

-dmultinom(x,prob=multinomialprobs(par),log=T)

}

> fit <- optim(c(-10,20),lnL,x=x)

> fit$par

[1] -1.528548 -1.996059

> multinomialprobs(fit$par)

[1] 0.26271241 0.15859208 0.03220303 0.54649247

In contrast, the original code might fail if bad starting values are used.
Finally it should be noted that if the function being maximised has several maxima, the

algorithm may only find a local and not the global maximum but this is seldom the case when
we are maximising a likelihood function. Furthermore, for a model containing more parameters
than can be estimated from the data, the likelihood surface may take the shape of a flat ridge
with no maximum. Similarly, problems due to linear separation (see handout 4) may lead to a
misbehaved likelihood function.

2 Some asymptotic theory

2.1 Approximate standard errors

The likelihood function plotted in Fig. 2 looks very similar to a two-dimensional density func-
tion. However, in ordinary frequentist statistics, we can not make this interpretation since the
parameters a and b are unknown fixed constants and not random variables. We shall see, how-
ever, that approximate standard errors can be computed based on the curvature (a matrix of
second order partial derivatives) of the log likelihood function.

Let us first consider a simple example involving a single unknown parameter. If X ∼
bin(n, p) and we observe x successes out of n trials, the likelihood function is

L(p) =

(
n

x

)
px(1− p)n−x, (10)

the log likelihood

l(p) = ln

(
n

x

)
+ x ln p+ (n− x) ln(1− p), (11)

and the value of p which maximises the log likelihood, the solution of the equation

dl

dp
=
x

p
− n− x

1− p
= 0 (12)

is
p̂ = x/n. (13)

Since X has a binomial distribution VarX = np(1− p) and the variance of the estimator p̂ is

Var p̂ = VarX/n =
p(1− p)

n
. (14)

8

Now consider the second derivative of l,

d2l

dp2
= − x

p2
+

n− x
(1− p)2

. (15)

At the maximum likelihood, that is, for p = p̂ = x/n, the second derivative takes the value

d2l

dp2

∣∣∣∣
p=x/n

= −xn
2

x2
+

(n− x)n2

(n− x)2
= − n

p̂(1− p̂)
. (16)

Thus, in this case, we see that (
− d

2l

dp2

∣∣∣∣
p=p̂

)−1
(17)

gives us an estimate of the variance (14) of the maximum likelihood estimator p̂. Note how the
inverse relationship means that a large second derivative gives a small estimate of the variance.

More generally, for a model with k parameters θ = (θ1, θ2, . . . , θk), an estimate of the
variance-covariance matrix of the maximum likelihood estimates is given by

−

∂2l

∂θ21

∂2l

∂θ1∂θ2
. . .

∂2l

∂θ1∂θk
∂2l

∂θ2∂θ1

∂2l

∂θ22
...

. . .

∂2l

∂θk∂θ1

∂2l

∂θ2k

−1

θ=θ̂

(18)

where −1 denotes the matrix inverse.
This result follows from asymptotic efficiency of maximum likelihood estimators and the so

called Cramér-Rao lower bound. It is only exact asymptotically as the sample size n goes to
infinity. For small sample sizes it may provide a poor approximation to the variance-covariance
matrix of the estimators.

In practice, if the maximum likelihood estimates are computed by maxisining the likelihood
numerically using the method in subsection 1, the above matrix containing all the second
order derivatives is computed by optim if specifying the additional argument hessian=TRUE.
Going back to the Weibull example, the variance-covariance matrix of the maximum likelihood
estimates can be computed by inverting this matrix using solve as follows.

> fit <- optim(c(1,1),l,t=tsim,hessian=TRUE)

> fit$hessian

[,1] [,2]

[1,] 22.851009 -2.103949

[2,] -2.103949 1.932290

> solve(fit$hessian)

[,1] [,2]

[1,] 0.04863777 0.05295861

[2,] 0.05295861 0.57518390

Since we are working with the negative log likelihood we don’t need to change the sign of each
element of the matrix.

Thus, (estimates of) the variance of the estimators based on the above asymptotic theory
are Var â = 0.048 and Var b̂ = 0.57. Taking the square root of the elements along the diagonal
we obtain the stanard errors

9

http://en.wikipedia.org/wiki/Efficiency_(statistics)
http://en.wikipedia.org/wiki/Cramer-Rao_lower_bound

> sqrt(diag(solve(fit$hessian)))

[1] 0.2205397 0.7584088

So the estimates of the shape and scale parameters are â = 2.01 ± 0.22 and b̂ = 10.23 ± 0.75.
An estimate of the correlaton is

> cov2cor(solve(fit$hessian))

[,1] [,2]

[1,] 1.0000000 0.3166258

[2,] 0.3166258 1.0000000

2.2 Asymptotic properties of likelihood ratio tests

Another useful approximate result concerns the the change in the maximum likelihood when
some model H0 is extended to some more general model H1, say by adding an extra explanatory
variable. In general, H0 needs to be nested inside H1, that is, H0 must be a special case of
H1 for certain parameter values. In such cases, the maximum likelihood (the probability of the
observed data) will always be larger for the more general flexible model just like the residual
sum of squares and the deviance is always reduced when an additional term is added to the
model is added to a linear or generalized linear model.

Thus, the ratio between the maximum likelihood under H1 and H0 or the difference between
the maximum log likelihoods can be used a test statistic. In practice, two times this,

2(lnL1 − lnL0) (19)

where L0 and L1 is the maximum likelihood under H0 and H1 is used. This statistic is approx-
imately chi-square distributed with degrees of freedom equal to the difference p1 − p0 between
the number of estimated parameters under H0 and H1.

Returning to the Weibull example we may be interested in testing the simpler null hypothesis
H0 that the shape parameter a = 1 versus the alternative model H1 in which a can take any
positve value. These models are then nested since H0 is a special case of H1 and (19) applies.
Under H0 each observation is now simply exponentially distributed with parameter b and the
maximum likelihood estimate of b is b̂ = t̄. The observed maximum log likelihood (4) at this
point in the parameter space simplifies to

lnL(1, b̂) = −n ln b̂−
n∑
i=1

ti

b̂

= −n ln t̄−
n∑
i=1

ti
t̄
.

(20)

For our simulated dataset this evaluates to

> n <- length(tsim)

> -n*log(mean(tsim))-sum(t/mean(t))

[1] -210.1440

From the $value component the list returned by optim, the maximum likelihood under H1 is
−145.603 so the observed value of our test statistic (19) is thus

> -146.603 - (-210.144)

[1] 63.541

that is, much greater than the critical value of

10

> qchisq(.95,df=1)

[1] 3.841459

so we can reject H0 : a = 0 (the exponential model) in favour of the more general Weibull model
which is not surprising given that the data was simulated from model for which the true value
of shape parameter a = 2.

3 More examples

3.1 Generalized linear models

Different quite complex models can easily be fitted using the above method. For example,
consider a generalized linear model with a binomially distributed response variable y. Suppose
that

logit p = β0 + β1x. (21)

This model contains two parameters β0 and β1. Given the observations (x1, y1), (x2, y2), . . . , (xn, yn),
the (negative log) likelihood can be computed as follows

lnLglm <- function(par,y,x) {

beta0 <- par[1]

beta1 <- par[2]

eta <- beta0 + beta1*x

p <- 1/(1+exp(-eta))

-sum(dbinom(y,size=1,prob=p,log=T))

}

The first two lines are there to increase the readability of the code. In the third line, the
predicted values on the logit scale for the current values of the parameters is computed for each
value of the explanatory variable x contained in x, and in the second last line, the corresponding
predicted probabilities. In the last line, since each Yi is binomially distributed with parameters
n = 1 and p’s given by the vector p, the total log likelihood can be computed as the sum of the
log of probabilities of each observed yi’value.

Using the data juul.girl (see Dalg. p. 240), the maximum likelihood estimates and
standard errors of the parameters β0 and β1 can now be found as follows.

> attach(jull.girl)

> y <- c(0,1)[menarche]

> fit <- optim(c(0,0),lnLglm,x=age,y=y,hessian=TRUE)

> fit

$par

[1] -20.014137 1.517378

$value

[1] 100.3321

$counts

function gradient

83 NA

$convergence

[1] 0

$message

11

NULL

$hessian

[,1] [,2]

[1,] 30.65301 401.1491

[2,] 401.14905 5291.7033

> sqrt(diag(solve(fit$hessian)))

[1] 2.0284609 0.1543851

This is exactly the estimates and standard errors returned when fitting the model with R’s built
in function for fitting generalized linear model.

> summary(glm(y~age,fam=binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -20.0132 2.0284 -9.867 <2e-16 ***

age 1.5173 0.1544 9.829 <2e-16 ***

--

Null deviance: 719.39 on 518 degrees of freedom

Residual deviance: 200.66 on 517 degrees of freedom

AIC: 204.66

Number of Fisher Scoring iterations: 7

Also recall that the deviance of a generalized linear model is defined as two times the differene
in log likelihood between the fitted and the full model. For the full model involving as many
parameters as observations, the maximum likelihood estimates of each p is simply p̂i = yi
since all the pi’s are essentially free parameters. At the maximum likelihood estimates of
all the pi’s, the proability of the observed data (the maximum likelihood) is thus simply one
and the maximum log likelihood under the full model is zero. Thus the deviance become
2(0− (−100.33) = 200.66 as reported in the summary.

While, standard generalized linear models encompass a large number of interesting models,
models involving non-standard assumptions are sometimes of interest and we need to resort to
the numerical techniques introduced above as we shall see in assignment 10.

In such cases it may still be of interest to compute the deviance of a given fitted model (see
assignment 11). In particular when each observation yi is based on many Bernoulli trials ni
this will allow us to assess the goodness-of-fit of a given model. In such cases, the maximum
likelihood estimates of each pi under the full model (a total of n parameters) then becomes

p̂i =
yi
ni

(22)

and the corresponding maximum log likelihood becomes

lnLfull =
∑

ln

(
ni
yi

)
+
∑

yi ln p̂i +
∑

(ni − yi) ln(1− p̂i) (23)

The result that the deviance, that is,

D = 2(lnLfull − lnL) (24)

is approximately chi-square distributed with n− p degrees of freedom, as we noted in handout
4, follows from the more generally theorem (19) introduced above, since a given model and the
full model are two nested alternative models involving p and n parameters respectively.

12

3.2 Biased sampling (optional material)

Family size example...

3.3 More computationally intensive likelihoods (optional material)

Suppose that the weight of different individuals in a population of cod follows a log-normal
distribution such that logtransformed weights X are normally distributed with parameters µ
and σ. We sample n individuals with weights X1, X2, . . . , Xn from the population at random
but using a fishing net such that only individuals above a certain size X > a are captured...

4 Simulation based methods

For many models, including both standard and non-standard models, only various approximate
results are available from which we can compute standard errors of parameter estimates and
test different alternative hypotheses. When the amount of data is small, these approximation
may perform poorly. In such cases, we may need to assess the properties such as the bias and
variance of the estimators used using simulations. We begin by a brief recap of basic probability
theory.

The sample space S of a random experiment is the set of all distinct outcomes s of the
experiment. An event A is subset of the sample space S. The probability of an event A is
usually defined as the limiting value of the long run frequency of the event if we imagine that
we repeat the experiment many times,

P (A) = lim
m→∞

nA
m
. (25)

On the computer, we can easily generate realisations of given random experiments. If we then
count number of times nA a given event A occurs and divide this by the number of realisations
generated m, we obtain an estimate of P (A). By increasing m, the estimate can be made
arbitrarily precise.

On given sample spaces we also define random variables. The expected value of contineous
random variables is defined as

EX =

∫
xf(x)dx (26)

and for discrete random variables, as

EX =
∑

xp(x). (27)

The theoretical expecation EX of a random variable X can be thought of as the limiting value
of the long run average if we imagine that we repeat the experiment many times.

Again, on the computer, we can easily simulate many realisations of such random variables,
say realisations X(1), X(2), . . . , X(m). An estimate of the theoretical expecation can computed
simply by taking the average of the simulated values,

X̄ =
1

m

m∑
i=1

X(i). (28)

By increasing the number of realisations m, the theoretical mean EX can be estimated with
arbitrarily precision. Similarly,

VarX = E(X − EX)2, (29)

that is, the expected value of the random variable W = (X − EX)2, can be estimated by

1

m

m∑
i=1

W (i) =
1

m

m∑
i=1

(X(i) − EX)2 (30)

13

In practice, if we don’t know the mean EX, the sample variance

S2 =
1

m− 1

m∑
i=1

(X(i) − X̄)2 (31)

may be used.

4.1 Computing probabilites

Suppose that the number of goals scored by Denmark and Norway X1 and X2 in a given match
is Poisson distributed with expectations λ1 = 1.2 and λ2 = 1.5 respectively. What is the
probability of that Denmark wins, the probability of a draw and the probability that Norway
wins the game?

Given the assumptions, a realisation of the experiment can be simulated by simulating two
realisations from Poisson distributions with the appropriate means. If we do this m = 1000
times and count the number of realisations which leads to a victory for Denmark, a draw and
a victory for Norway, estimates of the above probabilities can be computed by dividing the
respective counts by m as follows.

footballprob <- function(lambda1,lambda2,m=1000) {

n.team1 <- n.team2 <- n.draws <- 0

for (i in 1:m) {

x1 <- rpois(1,lambda1)

x2 <- rpois(1,lambda2)

if (x1==x2) {

n.draws <- n.draws + 1

} else {

if (x1 > x2)

n.team1 <- n.team1 + 1

else

n.team2 <- n.team2 + 1

}

}

list(team1=n.team1/m,draw=n.draws/m,team2=n.team2/m)

}

Plugging in the Poisson means for each team, the probabilities are

> footballprob(1.2,1.5)

$team1

[1] 0.288

$draw

[1] 0.245

$team2

[1] 0.467

4.2 Computing coverage probabilities of approximate confidence intervals

Suppose that we observe X = x successes out in a total of n indepenent Bernoulli trials so
that X is binomially distributed. In most introductory statistics textbooks, the approximate
(1− α)-confidence interval

(p̂− zα/2
√
p̂(1− p̂)/n, p̂+ zα/2

√
p̂(1− p̂)/n) (32)

14

for the parameter p is derived based on the approximate standard normal distribution of

p̂− p√
p̂(1− p̂)/n

. (33)

Also, this interval do not involve a continuity correction for the fact that X (and hence (33)) is
discrete and not continuous.

In R, a confidence intervals involving fewer approximations and a continuity correction is
computed by the function prop.test. Suppose that the true value of p = 0.1 and that n = 100.
We may then simulate on realisation of the data and compute the interval as follows.

> p <- 0.1

> x <- rbinom(1,size=n,prob=p)

> x

13

> prop.test(x,n)$conf.int

[1] 0.07376794 0.21560134

Note how we can refer the confidence interval computed by prop.test (a vector of length 2) by
referring to the $conf.int component of the list returned by prop.test. Also note that this
interval is assymetric around p̂ = 0.1.

In contrast, the textbook interval (32) is assymetric. Let’s first program a function which
computes this interval. This function will need to take x and n as arguments. As we shall see
later, life will be easier if our function computing the textbook interval returns the interval the
same way as prop.test, that is, as a vector as part of a list. The upper α/2-quantile, zα/2 is
computed with qnorm.

textbook.ci <- function(x,n,alpha=0.05) {

phat <- x/n

z <- qnorm(alpha/2,lower.tail=FALSE)

lower <- phat - z*sqrt(phat*(1-phat)/n)

upper <- phat + z*sqrt(phat*(1-phat)/n)

list(conf.int=c(lower,upper))

}

Testing this on the same simulated data we get the following.

> textbook.ci(x,n)

$conf.int

[1] 0.06408574 0.19591426

While the nominal confidence level of both intervals are 95%, the real coverage, that is,

P (A < p < B) (34)

where A and B is the lower and upper limit of the confidence interval, may differ from this. The
above probability may be computed by simulating say, m = 1000 realisations of the experiment,
and then counting the number of times the confidence limits contains the true parameter value
p. Using a for-loop, this can be done as follows in R.

p <- 0.1

n <- 100

nA <- 0

for (i in 1:1000) {

x <- rbinom(1,size=n,prob=p)

15

ci <- prop.test(x,n)$conf.int

if (ci[1]<p & ci[2]>p)

nA <- nA + 1

}

Based on these simulations, the estimate of the above probability becomes

> nA/1000

[1] 0.967

This can be turned into a more general function which can find the coverage of confidence
intervals computed by different functions fn.

coverage <- function(n,p,fn=prop.test,m=1000) {

nA <- 0

for (i in 1:m) {

x <- rbinom(1,size=n,prob=p)

ci <- fn(x,n)$conf.int

if (ci[1]<p & ci[2]>p)

nA <- nA + 1

}

nA/m

}

Comparing the real coverage of the above two intervals is now straightforward.

> coverage(n=100,p=.1,prop.test)

[1] 0.977

> coverage(n=100,p=.1,textbook.ci)

[1] 0.935

More accurate estimates can be obtained by generating more than the default number of sim-
ulations.

> coverage(n=100,p=.1,prop.test,m=10000)

[1] 0.9726

> coverage(n=100,p=.1,textbook.ci,m=10000)

[1] 0.9324

For the parameter values used, we see that prop.test computes a more conservative interval
whereas the true coverage of the textbook interval in fact is smaller than the nominal level of
95%.

4.3 Assessing bias and variance of estimators

Suppose that X1, X2, . . . , Xn is a random sample from an exponential distribution with density
function

f(x) = λe−λx (35)

The MLE of λ is then
λ̂ =

n∑
Xi

(36)

Suppose that the true value of λ = 1. A single realisation of the above random sample of size
n = 10 can no be simulated as follows

16

n <- 10

lambda <- 1

X <- rexp(n,rate=lambda)

and the corresponding value of λ̂ becomes

> lambdahat <- n/sum(x)

> lambdahat

[1] 0.1818182

To assess the bias of this estimator we simulate 1000 realisations of the experiment and store
all the simulated values of λ̂ in a vector we call lambdasim.

lambdasim <- NULL

for (i in 1:1000) {

X <- rexp(n,rate=lambda)

lambdasim[i] <- n/sum(X)

}

The first line creates lambdasim as an empty vector. This is necessary since assigning values to
elements of non-existing vectors will cause an error:

> myvector[3] <- 5

Error in myvector[3] <- 5 : object ’myvector’ not found

An estimate of E(λ̂) can now be obtained by taking the average of the simulated values.

> mean(lambdasim)

[1] 1.114902

This indicates that λ̂ overestimates λ by about 10%.
The bias may of course depend on λ which in practice will be unknown aswell as the sample

size. To investigate how, let’s first turn the above code into a more convinent function which
computes an estimate of Eλ̂ aswell as Var λ̂ for given values of λ and n.

lambdahat.properties <- function(lambda=1,n,m=1000) {

lambdasim <- NULL

for (i in 1:1000) {

X <- rexp(n,rate=lambda)

lambdasim[i] <- n/sum(X)

}

list(mean=mean(lambdasim),var=var(lambdasim))

}

A few numerical experiments now suggests that the bias in general seems to be proportional to
the true value of λ which is perhaps not very surprising.

> lambdahat.properties(1,10)

$mean

[1] 1.103104

$var

[1] 0.1469100

> lambdahat.properties(100,10)

$mean

17

●

●

●
●

●
● ● ● ●

1 2 5 10 20 50 100

0
1

2
3

4
5

Samplesize n

E
(λ̂

)

Figure 4: The expected value of the MLE of λ in the exponential model (second axis) estimated
by simulating m = 1000 random samples of different size n (first axis) using λ = 1 (solid line).

[1] 110.2236

$var

[1] 1530.352

> lambdahat.properties(10000,10)

$mean

[1] 11273.91

$var

[1] 16601025

How does the bias depend on the sample size n? A plot (Fig. 4) showing how the estimate of
Eλ̂ change with increasing sample size can be generated as follows.

nn <- c(1,2,3,4,5,10,20,50,100)

ll <- NULL

for (i in 1:length(nn)) {

ll[i] <- lambdahat.properties(1,n=nn[i])

}

plot(nn,ll,ylim=c(1,5),log="x",xlab="Samplesize n",ylab=expression(E(hat(lambda))))

The bias is thus very large for small sample size but quickly decline to an acceptable level once
the sample size reaches about 20 observations.

Next we consider a slightly more elaborate example. For a simple linear regression model,

Yi = α+ βxi + εi, (37)

where εi ∼ N(0, σ2), it is relatively easy to show that the estimator of the slope,

β̂ =

∑
Yi(xi − x̄)∑
(xi − x̄)2

(38)

is

N(β,
σ2∑

(xi − x̄)2
). (39)

18

The normality of β̂ follows from the fact that β̂ is a linear combination of the Yi’s.
Let’s see if we can verify this using simulations. To do this we need to need to simulate

realisations of our experiment multiple times. A realisation of the experiment does in this case
consist of realisations of the response Yi for each given value of the explanatory variable xi.

Suppose that the true value of the intercept α = 5, the true value of the intercept is β = 0.5
and the true value of σ2 = 1.

alpha <- 5

beta <- .5

simga2 <- 1

Suppose also that we are measuring the response for the following values of the explanatory
variable xi.

x <- 1:10

n <- length(x)

We can now simulate a realisation of the experiment (realisation of the n = 10 Yi’s) as follows.

Y <- rnorm(n,mean = alpha + beta*x, sd=sqrt(sigma2))

Note how this is done by letting the second argument be a vector specifying the expected value
of each Yi.

Having simulated one realisation, the corresponding value of β̂ can be computed using
equation (38) as follows

betahat <- sum(Y*(x-mean(x)))/sum((x-mean(x))^2)

Alternatively, an approach that can be used more generally is to fit a linear regression using
lm and extract the estimate from the fitted model object using coef which returns a vector of
parameters, the second one being the slope.

betahat <- coef(lm(Y~x))[2]

coef returns a named vectors so we can get at the estimate of the regressio coefficient for a
particular explanantory by referring to it by it’s name.

> coef(lm(Y~x))

(Intercept) x

5.0181893 0.5232656

> coef(lm(Y~x))["x"]

x

0.5232656

Now let’s repeat the above simulation of a single realisation a 1000 times by putting the
code inside a for-loop and store all the simulated β̂’s into a vector called betasim.

betasim <- NULL

for (i in 1:1000) {

Y <- rnorm(n,mean = alpha + beta*x, sd=sqrt(sigma2))

betasim[i] <- coef(lm(Y~x))["x"]

}

A histogram of the simulated β̂’s with the theoretical density function of β given by (39) added
on top of the histogram generated using the code

19

betasim

D
en

si
ty

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
1

2
3

Figure 5: Histogram of simulated values of the estimator of the slope β̂ in a linear regression
and the theoretical normal density function.

hist(betasim,freq=F)

varbetahat <- sigma2/sum((x-mean(x))^2)

curve(dnorm(x,mean=beta,sd=sqrt(varbetahat)),add=T)

is shown in Fig. 5.
The mean and variance of the simulated realisations also conforms with the theory.

> mean(betasim)

[1] 0.4977819

> beta

0.5

> var(betasim)

[1] 0.01116444

> varbetahat

[1] 0.01212121

4.4 How well do the asymptotic approximations work? (Optional material)

In section 2.2 we used a general theorem from asymptotic theory stating that the change in
two times the log likelihood is approximately chi-square when nested model alternatives are
considered. We applied this theorem in a test between two particular nested models; the
exponential model and the more general Weibull model.

How well this approximation works will depend on the particular models we are considering.
In practice, it is relatively easy to simulate the distribution of this test statistic. Let’s consider
the Weibull example again. The theorem is a statement about the distribution of the test
statistic under H0. We thus need to simulate data under the null hypothesis that the data come
from an exponential distribution. We can only find the distribution for given values of other
parameters of the model, in the exponential case, the scale parameter b (we choose to work with
the parametesation f(t) = (1/b)e−t/b). We have seen earlier how the maximum log likelihood
both under H0 (the exponential model) and under H1 (the Weibull model) can be computed

20

(the latter using optim). The following function simulates many realisations from H0, computes
the log likelihoods under both model alternatives and stores the value of 2(lnL1 − lnL0) in a
vector which is returned as it’s value.

l <- function(p,t) {

-sum(dweibull(t,shape=p[1],scale=p[2],log=T))

}

asympt.chisq <- function(n,b=1,m=1000) {

teststat <- NULL

for (i in 1:m) {

t <- rexp(n,rate=1/b) # one realisation of the random sample under H0

bhat.H0 <- mean(t) # MLE of b under H0

lnL.H0 <- -l(c(1,bhat.H0),t=t) # maximum loglik under H0

lnL.H1 <- -optim(c(1,bhat.H0),l,t=t,lower=c(.001,.001))$value # maximum loglik under H1

teststat[i] <- 2*(lnL.H1 - lnL.H0)

}

teststat

}

A histogram of the simulated distribution of 2(lnL1−lnL0) for sample sizes of n = 5, 10, 100
along with the theoretical chi-square distribution with one degree of freedom generated with
the code

par(mfrow=c(1,3))

for (n in c(5,10,100)) {

hist(asympt.chisq(n=n,m=1000),freq=F,main="",

xlab="Change in two times loglik",

breaks=seq(0,20,by=.5),xlim=c(0,10))

curve(dchisq(x,df=1),add=T)

legend("topright",leg=n,bty="n")

}

is shown in Fig. 6. As we see, the approximation works remarkably well also for samples size as
small as n = 10. For n = 5, the true distribution appear to have a heavier right tail than the
theoretical chi-square.

4.5 Computing power

For some standard statistical tests such as a one- and two-sample t-tests and tests of equality
of two proportions we have seen (Dalgaard, ch. 9) that closed form expression for the power
γ of the test are available. If we require a certain power γ, we can then find for example the
necessary sample size n by solving the power equation either analytically or using numerical
methods.

In some cases we do not have an expression for the power of the test and we need to
compute this by other means. Recall that the power of a given test is defined as the probability
of rejecting the null hypothesis H0 given that the alternative hypothesis is correct H1. Rejection
of the null hypothesis is the event that the test statistic falls in the critical region. If we can
simulate many realistations of the model under H1 and compute the corresponding value of the
test statistic for each realisation, the power can be computed approximately by dividing the
number of rejections of H0 by the number of simulations.

21

Change in two times loglik

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8 5

Change in two times loglik
D

en
si

ty

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10

Change in two times loglik

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 100

Figure 6: Simulated distribution of two times the change in log maximum likelihood for a test of
the exponential against the more general Weibull model for samples sizes of n = 10, 100, 1000.
The solid line represents the theoretical asymptotic or approximate chi-square distribution of
the test statistic.

Consider the logistic regression model

logit p = β0 + βabab + βageage (40)

from assignment 6 for the risk om malaria using age and the log of antibody level as explanatory
variables.

> malaria

subject age ab mal

1 1 15 546 0

2 2 14 268 0

3 3 12 284 0

4 4 15 38 0

5 5 14 827 0

6 6 12 252 0

7 7 12 24 1

8 8 13 1740 0

9 9 13 76 0

10 10 14 83 0

11 11 13 67 0

12 12 15 31 0

13 13 14 1407 1

14 14 15 1949 0

The estimate of the regression coefficient for the effect of age was βage = −0.06 which corresponds
to an oddsratio of malaria per year of increasing age of 0.936, that is, the odds of malaria decrease
by approximately 6% per year of increasing age. This effect was not statistically significant from
zero, however, as can be seen from the large P -value in the summary of the model.

> summary(glm(mal~log(ab)+age,binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.57234 0.95184 2.702 0.006883 **

log(ab) -0.68235 0.19552 -3.490 0.000483 ***

22

age -0.06546 0.06772 -0.967 0.333703

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The nullhypothesis that βage = 0 can be tested in two ways, either based on an approximate

standard normal distribution (under H0) of Z = β̂age/ ̂SE(βage) or on the approximate chi-
square distribution of the change in deviance when removing age from the model (computed by
drop1()). Suppose we base our test on the first approximation.

We may now for example ask how the power of the test of this nullhypothesis depends on the
true value of βage, say, a more negative value. Note, however, that the overall risk of malaria will
go down if we make βage more negative and keep other parameters fixed, notably the intercept
which represent the risk of malaria at age= 0 for the current model. The way around this is to
introduce a new age variable centered around the mean age of all individuals in the sample and
use this as the second explanatory variable in the model.

> age2 <- age-mean(age)

> age2

[1] 6.14 5.14 3.14 6.14 5.14 3.14 3.14 4.14 4.14 5.14 4.14 6.14

...

[85] -5.86 -4.86 -4.86 -5.86 -4.86 -5.86 -5.86 -4.86 -5.86 -4.86 -4.86 -5.86

[97] -5.86 -5.86 -4.86 -3.86

> summary(glm(mal~log(ab)+age2,binomial))

Call:

glm(formula = mal ~ log(ab) + age2, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.99236 0.85556 2.329 0.019874 *

log(ab) -0.68235 0.19552 -3.490 0.000483 ***

age2 -0.06546 0.06772 -0.967 0.333703

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This is really only a kind of reparameterization of the model which only changes the interpreation
of the intercept to the risk of malaria on the logit-scale at an age equal to mean age of the
individuals in the sample.

A realisation of the experiment for parameter values equal to the parameter estimates com-
puted from the observed data but using a slightly more negative value for βage can now be
simulated as follows

n <- nrow(malaria)

beta0 <- 1.99

betaab <- -0.68

betaage <- -0.1 # slightly more negative effect

eta <- beta0 + betaab*log(ab) + betaage*age2 # the linear predictor

p <- 1/(1+exp(-eta)) # prob. of malaria

malsim <- rbinom(n,size=1,prob=p)

The vector malsim now contains a simulated sample.

23

> malsim

[1] 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1

[38] 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

[75] 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0

Refitting the model to the simulated data, the actual value of the test statistic of interest can
be extracted from the $coefficients components of the list returned by summary.glm (see
?summary.glm).

> malmod <- glm(malsim ~ log(ab) + age,binomial)

> summary(malmod)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3313313 0.9038219 2.579414 0.009896796

log(ab) -0.7431750 0.2043223 -3.637268 0.000275545

age2 -0.2336564 0.0772452 -3.024865 0.002487438

To get at the actual Z-value in this named matrix, we refer to the column and row of interest
by their names.

> summary(malmod)$coef["age2","z value"]

[1] -3.024865

Thus for this particular simulated realisation of the experiment using the above parameter
values, the test statistic of the test of interest falls below the lower critical value of the test.

> qnorm(.025)

[1] -1.959964

The power of the test can be estimated by doing the above say a 1000 times and counting the
number of rejections. It makes sense to put everything together as a function as follows.

power.logistic.regression <- function(beta0=1.99,betaab=-0.68,betaage=-0.1, m=1000) {

n <- nrow(malaria)

eta <- beta0 + betaab*log(ab) + betaage*age2 # the linear predictor

p <- 1/(1+exp(-eta)) # prob. of malaria

n.rejections <- 0

for (i in 1:m) {

malsim <- rbinom(n,size=1,prob=p)

malmod <- glm(malsim ~ log(ab)+age2,binomial)

zsim <- summary(malmod)$coef["age2","z value"]

if (abs(zsim) > qnorm(0.975))

n.rejections <- n.rejections + 1

}

n.rejections/m

}

Note how only certain operations need to be inside the for-loop.
That is all, we can now compute the power for different true values of βage.

> power.logistic.regression(betaage=-.1)

[1] 0.291

> power.logistic.regression(betaage=-.2)

[1] 0.836

> power.logistic.regression(betaage=-.3)

[1] 0.983

> power.logistic.regression(betaage=0)

[1] 0.049

24

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βage

P
ow

er

Figure 7: Power of a z-test of H0 : βage = 0 vs H0 : βage 6= 0 for the logistic regression analysis
of the malaria data (solid line). Also shown is the power if intercept in the model with non-
centered age is kept constant (dashed line) and an approximation based on normality (dotted
line).

This appears to work correctly, note that we reject H0 given that H0 is true (βage = 0) (type I
error) with the correct probability.

The above can be turned into a nice graph (Fig. 7) as follows.

bb <- seq(-.4,.4,length=21)

pp <- NULL

for (i in 1:length(bb)) {

pp[i] <- power.logistic.regression(betaage=bb[i])

}

plot(bb,pp,xlab=expression(beta[age]),ylab="Power",type="l",ylim=c(0,1))

4.6 Robustness of the t-test

Many statistical procedures such as the t-test, linear regression and analysis of variance, relies
on the assumption that the data has a normal distribution. In practice, we seldom know if this
assumption holds. Many of these methods are robust, however, in the sense that they behave
approximately “the way they should” also if the data is non-normal. More specifically, the
t-test is constructed such that the probability of type I error (incorrectly rejecting H0) is equal
to the level of significance α based on the assumption that each observation follows a normal
distribution. If this assumption is incorrect, we may get a higher or lower rate of type I error.
If the real probability of type I error is close to the nominal level of α we say that the method
used is robust.

Suppose that we observe the lifespans of individuals each sex of a given organism and that
the observed lifespans X1, X2, . . . , Xn and Y1, Y2, . . . , Yn in each sex comes from exponential
distributions with parameters λ1 and λ2, respectively. We are interested in testing if the is
any difference between the sexes in mean lifespan. In the absense of any better idea, we use a
two-sample t-test to test if there is any difference between the sexes in mean life span.

The real probability of type I error can now be found by simulating exponentially distributed
data from the real model under the null hypothesis of no sex difference, then performing a t-test

25

on the log-transformed data and counting the number of times we reject H0.

robustness <- function(n,lambda=1,m=1000) {

n.rejections <- 0

for (i in 1:m) {

x <- rexp(n,rate=lambda) # both rates are lambda

y <- rexp(n,rate=lambda) # since we are simulating from H0

teststat <- t.test(x,y,var.equal=TRUE)$statistic

if (abs(teststat)>qt(.975,df=2*n-2))

n.rejections <- n.rejections + 1

}

n.rejections/m

}

Simulations for particular sample sizes n (number of observations of each sex) gives the following.

> robustness(n=5)

[1] 0.047

> robustness(n=10)

[1] 0.044

> robustness(n=20)

[1] 0.051

Note, however, that there is considerable uncertainty in these estimates if they are based on
only m = 1000 simulations. For example, for n = 5, a 95%-confidence interval for true coverage
probability based becomes

binom.test(47,1000)$conf

[1] 0.03473506 0.06201263

attr(,"conf.level")

[1] 0.95

which implies that the true coverage, based on these simulations, may be equal to the nominal
level of 0.05.

Fig. 8 generated using the code

nn <- c(2,3,4,5,10,20,50,100)

pp <- NULL

for (i in 1:length(nn))

pp[i] <- robustness(n=nn[i],m=100000)

plot(nn,pp,xlab="Sample size n",ylab="Prob. of type I error",ylim=c(.03,.06))

abline(h=.05,lty=2)

shows how the probability of type I error depends on n for 2 ≤ n ≤ 20 based on more extensive
simulations.

26

●

●

●
●

●

●

● ●

0 20 40 60 80 100

0.
03

0
0.

04
0

0.
05

0
0.

06
0

Sample size n

P
ro

b.
 o

f t
yp

e
I e

rr
or

Figure 8: Real probability of type I error for a two-sample t-test for non-normal (log-tranformed
exponentially) distributed observations).

27

	Numerical maximization of the likelihood
	Constraints on the parameters

	Some asymptotic theory
	Approximate standard errors
	Asymptotic properties of likelihood ratio tests

	More examples
	Generalized linear models
	Biased sampling
	More computationally intensive likelihoods (optional material)

	Simulation based methods
	Computing probabilites
	Computing coverage probabilities of approximate confidence intervals
	Assessing bias and variance of estimators
	How well do the asymptotic approximations work? (Optional material)
	Computing power
	Robustness of the t-test

