
Solution of assignment 1, ST2304
August 1, 2016

Problem 1
Brain size on average constitutes 0.96% of the total body weight.

> # Load

> mammals <- read.table("https://www.math.ntnu.no/~jarlet/statmod/mammals.dat",

+ header=T)

>

> # Attach to search path. I.e. make variables available by name.

> attach(mammals)

> round(mean((brain/1000)/body)*100, 2)

[1] 0.96

1. A simple scatterplot visualizes the relationship between the two variables. It is somewhat
hard to see if the relationship between untransformed variables is linear since the distributions
of both variables are highly skewed.

> plot(x=body, y=brain)
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2. The variables were log-transformes using the function log(). Natural logarithms are the
default option (see ?log()). In the following scatterplot, log-transformed variables are shown
and appropriate axis labels have been added.
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> logbody <- log(body)

> logbrain <- log(brain)

>

> plot(x=logbody, y=logbrain,

+ xlab="log body size (kg)",

+ ylab="log brain size (g)")

−4 −2 0 2 4 6 8

−
2

0
2

4
6

8

log body size (kg)

lo
g 

br
ai

n 
si

ze
 (

g)

In terms of the original untransformed variables the relationship between brain and body size
becomes

brain = expα+β log brain = expαbodyβ = α′bodyβ. (1)

where exp denotes the exponential function.

3. We fit the linear regression model log body = α+ β log brain + e and inspect the estimated
parameter values.

> linreg <- lm(logbrain~logbody)

> linreg

Call:

lm(formula = logbrain ~ logbody)

Coefficients:

(Intercept) logbody

2.1348 0.7517
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The model summary for this model produced by R provides us with additional details and
tests of significance.

> summary(linreg)

Call:

lm(formula = logbrain ~ logbody)

Residuals:

Min 1Q Median 3Q Max

-1.71550 -0.49228 -0.06162 0.43597 1.94829

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.13479 0.09604 22.23 <2e-16 ***

logbody 0.75169 0.02846 26.41 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6943 on 60 degrees of freedom

Multiple R-squared: 0.9208,Adjusted R-squared: 0.9195

F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16

We see that the parameter estimates are α̂ = 2.13, β̂ = 0.75 and σ̂ = 0.69 (the “residual
standard error”). Log body size has a significant effect on log brain size (the P value for the
test is much less than 0.05, a commonly chosen level of significance). It might be noted that the
estimated slope is independent on whether natural or base 10 logarithms are used and whether
both variables are in the same units or not. However, the estimated intercept is dependent on
these decisions.

Now we can add the estimated regression line to the scatterplot of brain size on body size.

> plot(x=logbody, y=logbrain,

+ xlab="log body size (kg)",

+ ylab="log brain size (g)")

>

> abline(linreg)
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4. To allow one to see which species that are located where in the graph one may add species
names as labels in the graph. By also adding type="n" in the R-code we avoid plotting the
species names on top of the default bullets in the graph.

> plot(x=logbody, y=logbrain,

+ xlab="log body size (kg)",

+ ylab="log brain size (g)",

+ type="n")

>

> abline(linreg)

> text(logbody,logbrain,species,cex=.4)
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5. The human species has the largest deviation from the estimated regression line.

> # Human observed

> obs_human_brain <- logbrain[species == "Human"]

> obs_human_brain

[1] 7.185387

> obs_human_body <- logbody[species == "Human"]

> obs_human_body

[1] 4.127134

> # Human predicted

> pred_human_brain <- coef(linreg)[1] +

+ coef(linreg)[2] * logbody[species == "Human"]

> pred_human_brain

(Intercept)

5.237098

> # Original scale

> exp(pred_human_brain)

(Intercept)

188.1233

The log brain size of humans are 7.19. The expected value of log brain size in humans based
on the log body size in humans of 4.13 and the fitted model becomes α̂+ β̂ × log body size =
2.13 + 0.75 × 4.13 = 5.24. On the original non-transformed scale, the predicted brain size is
exp5.24 = 188 grams, while the observed brain size is exp7.19 = 1320 grams.
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> # Probability of brain larger than observed

> prob_human_brain <- pnorm(q=obs_human_brain,

+ mean=pred_human_brain,

+ sd=summary(linreg)$sigma,

+ lower.tail=FALSE)

> # P-value

> prob_human_brain

[1] 0.002506931

> # As percent

> round(prob_human_brain * 100, 2)

[1] 0.25

According to the regression model log brain size is normally distributed with the expectation
equal to the predicted value and standard deviation equal to σ̂ = 0.69. From this we find
that the probability that log brain size is equal or greater than the observed value of 7.19,
P (log brain > 7.19) is 0.25%. That is, very small. Some authors, e.g. Geoffrey Miller have
suggested that large brain size in Humans evolved as a result of runaway selection.

6. According to equation 1, for β = 1 brain size is directly proportional to body size, whereas
for β < 1, larger species tend to have disproportionately smaller brain sizes.

> # Sample size

> n <- nrow(mammals)

> n

[1] 62

A test of H0 : β = 1 vs H1 : β 6= 1 can be based on the test statistic

T =
β̂ − β0

ŜE(β̂)
=

β̂ − 1

ŜE(β̂)
(2)

which is t-distributed with n− 2 = 62− 2 = 60 degrees of freedom under H0. We can extract
the necessary estimates from the summary table, then calculate the t- and P -value for the test.

> # Extract estimates from summary table

> beta <- coef(summary(linreg))[2, 1]

> beta_se <- coef(summary(linreg))[2, 2]

>

> # T-test

> tval <- (beta-1)/beta_se

> tval

[1] -8.723929

> pval <- 2*pt(tval, df = n-2)

> pval

[1] 2.884369e-12
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Given the observed t-value of T = −8.72 the probability under H0 that T takes the observed
or a more extreme value (the P -value for the test) becomes 2× P (T < −8.72) < 0.0001. If we
chooce a level of significance α = 0.05 we can thus reject the null hypothesis that brain size
is directly proportional to body size in favour of H1. The estimated β̂ = 0.75 indicates that
mammals with large body size have disproportionally smaller brains. Curiously, metabolic rate
has the same allometric relationship to body size as brain size.

7. The relationship between brain and body size is shown graphically below on the original
scale. The curve corresponding to equation 1 has been added to the graph.

> # Create graph

> plot(x=body, y=brain,

+ xlab="Body size (kg)",

+ ylab="Brain size (g)")

>

> # Coefficients

> coef(linreg)[1]

(Intercept)

2.134789

> coef(linreg)[2]

logbody

0.7516859

> # Add curve to the graph

> curve(expr = exp(2.134789)*x^0.7516859, add=TRUE)
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Problem 2
We made 10’000 realisations of the uniformly distributed random variables U1, U2, ..., U5. A
histogram U1 is shown.

> # Simulations

> u1 <- runif(10000)

> u2 <- runif(10000)

> u3 <- runif(10000)

> u4 <- runif(10000)

> u5 <- runif(10000)

>

> # Histogram

> hist(u1, breaks = 10)
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Histograms of Xn = U1 + ...+ Un for n = (2, .., 5) is shown below. par(mfrow=c(2,2)) alines
the graphs in two columns and rows.

> x2 <- u1 + u2

> x3 <- x2 + u3

> x4 <- x3 + u4

> x5 <- x4 + u5

>

> par(mfrow=c(2,2))

> hist(x2, breaks = 20, main = "n = 2")

> hist(x3, breaks = 30, main = "n = 3")

> hist(x4, breaks = 40, main = "n = 4")

> hist(x5, breaks = 50, main = "n = 5")
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We see that as we increase the number of terms in the sum the distribution approaches a
normal distribution.

> # Expectation and variance of uniform distribution

> eu <- (1/2)*(0+1)

> vu <- (1/12)*(1-0)^2

> eu

[1] 0.5

> vu

[1] 0.08333333

> # Expectation and variance of the

> # sum of 5 independent variables from

> # the same distribution

> ex <- 5*eu

> vx <- 5*vu

> ex

[1] 2.5

> vx

[1] 0.4166667

The uniform distribution has expected value and variance given by E(U) = µ = 1
2
(a+ b) = 0.5

and V (U) = σ2 = 1
12

(b− a)2 = 0.08, where a = minimum value and b = maximum value of the
distribution. From the central limit theorem we know that the sum (X) of n = 5 independent
random variables, approaches a normal distribution with E(X) = nµ = 5 × 0.5 = 2.5 and
V (X) = nσ2 = 5× 0.08 = 0.42.
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Below is the histrogram with probability densities of the sum of five uniformly distributed
variables with the theoretically expected normal distribution overlain.

> hist(x5, breaks = 50, main = "n = 5", freq = FALSE)

> curve(dnorm(x, mean = 5*eu, sd = sqrt(5*vu)),

+ from = min(x5), to = max(x5), add = TRUE)
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Problem 3
Let A denote the event that at least two persons have birthdays on the same day. Based on a
combinatorical argument, the probability of the complement of this (Ā), that all birthdays are
on different days become

P (Ā) =
Number of outcomes in Ā

Number of outcomes in S

=
365× 364× · · · × (365− 23 + 1)

36523
=

365!/(356− 23)!

36523

(3)

where S denote all possible combinations of birthdays. This exercise is really about how we can
do numerical computations involving very small numbers (e.g. probabilites) or large numbers
(e.g. in combinatorics). If we try to evalutate the above expression in R we get

> factorial(365)/factorial(356-23)/356^23

[1] NaN

> factorial(365)

[1] Inf

> Inf/Inf

[1] NaN

that is “not a number”. This error arise because 365! is larger than the largest double precision
decimal number R can handle,
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> .Machine$double.xmax

[1] 1.797693e+308

so the most sensible thing R can do is to handle the numerator and denominater as infinite
represented by Inf in R. However, there is no way R can know the value of Inf/Inf, thus we
get NaN.

The way around this problem is to work with logarithms of the quantities appearing in the
above fraction by rewriting (3) to the following form

365!/(356− 23)!

36523
= exp(ln

365!/(365− 23)!

36523
) = exp(ln 365!− ln 342!− 23 ln 365) (4)

If we study the help page of factorial we see that lfactorial computes lnx!, for example,

> lfactorial(365)

[1] 1792.332

Expression (4) can thus be written as follows in R

> exp(lfactorial(365)-lfactorial(342)-23*log(365))

[1] 0.4927028

Hence, the probability of A, P (A) = 1− P (Â) = 1− 0.493 = 0.507.

Many functions in R optionally computes logarithmic values, in some cases by by specifying
an optional log=TRUE argument, e.g. pnorm and dnorm. This is sometimes needed to avoid
numerical underflow, for example, in computations of a log likelihood.
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