
Solution of assignment 2, ST2304
August 1, 2016

Problem 1
The data set is loaded and attached.

> heights <- read.table("https://www.math.ntnu.no/~jarlet/statmod/heights.dat",

+ header=T)

> attach(heights)

There are four variables in the dataset with a total of 72 observations of each.

> str(heights)

'data.frame': 72 obs. of 4 variables:

$ offspring: num 179 179 183 178 194 172 168 173 180 162 ...

$ mother : int 164 170 168 162 163 164 172 154 165 158 ...

$ father : int 172 178 179 171 179 170 175 165 187 185 ...

$ sex : int 1 1 1 1 1 1 0 1 1 0 ...

1. A matrix of scatterplots for all combinations of variables is easily made and provides a rapid
overview of the data set.

> pairs(heights)
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2. Sexual dimorphism in height is explored using a regression model.

> regsex <- lm(offspring~sex)

> summary(regsex)

Call:

lm(formula = offspring ~ sex)

Residuals:

Min 1Q Median 3Q Max

-13.4000 -3.5191 -0.1383 2.1234 14.6000

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 167.8766 0.7882 212.983 < 2e-16 ***

sex 12.5234 1.3376 9.362 5.75e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.404 on 70 degrees of freedom

Multiple R-squared: 0.556,Adjusted R-squared: 0.5496

F-statistic: 87.65 on 1 and 70 DF, p-value: 5.749e-14
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The regression coeffiecient is the slope of the regression line, which is the difference in mean
height between females and males. Sex has an significant effect on height, as the P-value is
very small (5.75 × 10−14). Hence, we can reject the null hypothesis (H0 : β=0), and say that
males on average are 12.52 cm higher than females.

We may also test for sexual dimorphism by applying a t-test directly. We treat the two variances
(in female and male heigths) as being equal (var.equal=TRUE) calculating the pooled variance
to estimate the variance.

> ttest <- t.test(offspring[sex==0],offspring[sex==1],var.equal=TRUE)

> ttest

Two Sample t-test

data: offspring[sex == 0] and offspring[sex == 1]

t = -9.3623, df = 70, p-value = 5.749e-14

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-15.191256 -9.855553

sample estimates:

mean of x mean of y

167.8766 180.4000

The t-test also reject the null hypothesis of equal means of the heights in the two sexes
(H0:µfemale − µmale = 0) as the P-value is small (5.75 × 10−14). We see that the difference
between the means given in the t-test is equal to the estimate for the slope in the regression
(180.4− 167.88 = 12.52). Also, the P-values in the t-test and the regression are the same. The
results from the two tests seems to support each other, as the regression clearly state that sex
has an effect on height, and the t-test shows that two groups of sex have a significant different
means of height.

3. Midtparent values are computed. R provides us with multiple ways in which this may be
achieved (e.g. ?rowMeans, ?apply). However, in this case simple vectorized computations are
the best option.

> midparent<-(mother+father)/2

Then the midtparental values can be added to the regression model.

> regherit <- lm(offspring~sex + midparent)

> summary(regherit)

Call:

lm(formula = offspring ~ sex + midparent)
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Residuals:

Min 1Q Median 3Q Max

-9.3030 -2.5560 0.2545 2.5900 13.9421

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.1637 19.3822 3.001 0.00374 **

sex 13.5562 1.1280 12.018 < 2e-16 ***

midparent 0.6336 0.1119 5.664 3.14e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.497 on 69 degrees of freedom

Multiple R-squared: 0.6969,Adjusted R-squared: 0.6881

F-statistic: 79.32 on 2 and 69 DF, p-value: < 2.2e-16

The heritability of height is here found to be 0.63, this seems to be of the same magnitude as
found in the literature for stature of humans (h2 = 0.65) (see iGenetics, A Mendelian Approach
by P.J. Russel 2005). However, the genetic variance is the combined effect of additive genetic,
dominance and epistatic effects, so finding the real relationship between additive genetic vari-
ance and phenotypic variance may be more complicated.

A scatterplot of student heights against midtparental values is shown below.

> plot(x=midparent, y=offspring, pch=sex)

> abline(a=coef(regherit)[1],

+ b=coef(regherit)[3]) # Females

> abline(a=coef(regherit)[1]+coef(regherit)[2],

+ b=coef(regherit)[3], lty=2) # Males
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4. Including the midparent value in the regression, increased the estimated sex difference
in heigth from 12.52 to 13.56, in addition the standard error decreased from 1.34 to 1.13
(midparent explain some of the variation in height). This may be further understood by
examining the fitted model. For individuals i = (1, ..., n) the fitted model takes the following
form

heigthi = α + βsexsexi + βmidparentmidparenti + εi (1)

where α is the intercept, the regression coefficients (βmidparent and βsex) represent the indepen-
dent contributions of each explanatory variable (midparenti and sexi) to the prediction of the
response variable (heighti).

The reference value for sex is 0 (female) in the regression. The estimate of βsex (13.56) is
the difference in expected heights between the sexes given equal midparent values. Hence, if
we insert our parameter estimates we get the following equations for females (top) and males
(bottom)

heigth = 58.16 + 13.56× 0 + 0.63×midparent
= 58.16 + 0.63×midparent

heigth = 58.16 + 13.56× 1 + 0.63×midparent
= 71.72 + 0.63×midparent

5. In the following model sex was removed when estimating heritability of height.
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> regherit_no_sex <- lm(offspring~midparent)

> summary(regherit_no_sex)

Call:

lm(formula = offspring ~ midparent)

Residuals:

Min 1Q Median 3Q Max

-14.349 -4.889 -1.809 6.203 22.443

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.3828 33.2833 3.016 0.00357 **

midparent 0.4162 0.1928 2.159 0.03425 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.852 on 70 degrees of freedom

Multiple R-squared: 0.06245,Adjusted R-squared: 0.04906

F-statistic: 4.663 on 1 and 70 DF, p-value: 0.03425

Removing sex as a explanatory variable in the regression changed the estimate of heritability
to 0.42. Hence, by not including sex as a explanatory variable a lower (downwards biased)
estimate of heritability may result.

Problem 2
Spiral. a is a constant, we choose a=2.

x(t) = 2tcos(t) (2)

y(t) = 2tsin(t) (3)

Now we generate a sequence of t values sufficiently densely spaced, calculate x(t) and y(t) and
plot these.

> t <- seq(from=0, to=10*2*pi, by=0.01)

> xt <- 2*t*cos(t)

> yt <- 2*t*sin(t)

> plot(x=xt, y=yt, type="l")
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We see that cos(t) gives the angle direction of the spiral for each t and at is the distance from
the centre, giving the x coordinates (tcos(t)) and the y coordinates (tsin(t)).

Sunflower. We recognize r(i) and θ(i) as polar coordinates where θ(i) is the angle direction
from the centre of seed number i, θ(i) = π(3 −

√
5)i, and r(i) is the distance from the centre

of seed number i, r(i) = a
√
i. Following standard procedures these may be transformed into

the Cartesian coordinates x(i) and y(i)

x(i) = r(i)cos(θ(i))

= a
√

(i)cos(π(3−
√

5)i)

y(i) = r(i)sin(θ(i))

= a
√

(i)sin(π(3−
√

5)i)

We choose a=4 and makes a sequence i = (1, ..., n), with n number of seeds. We can see that
we can plot interesting things in R!

> a <- 4

> i <- seq(1:1000)

> theta <- pi*(3-sqrt(5))*i

> r <- a*sqrt(i)

> xi <- r*sin(theta)

> yi <- r*cos(theta)

> plot(x=xi, y=yi, type="l")
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