
Solution of assignment 4, ST2304
August 1, 2016

Problem 1
Reload the data from assignment 3.

> heli <- read.csv("z:/folder/helicopterdata.csv")

> attach(heli)

1. We first log-transform the response variable, and then reanalyse the data using a three-way
analysis of variance (ANOVA).

> logflighttime <- log(flighttime)

> loghelimod <- lm(logflighttime ~ size + wing + clip)

> anova(loghelimod)

Analysis of Variance Table

Response: logflighttime

Df Sum Sq Mean Sq F value Pr(>F)

size 1 0.0783 0.0783 1.8078 0.1814

wing 2 8.1317 4.0659 93.8251 < 2.2e-16 ***

clip 1 2.0896 2.0896 48.2198 2.414e-10 ***

Residuals 115 4.9835 0.0433

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Just like in assignment 3, size is non-significant. Thus, we remove this variable and reanalyse
the data.

> loghelimod2 <- lm(logflighttime ~ wing + clip)

> anova(loghelimod2)

Analysis of Variance Table

Response: logflighttime

Df Sum Sq Mean Sq F value Pr(>F)

wing 2 8.1317 4.0659 93.176 < 2.2e-16 ***

clip 1 2.0896 2.0896 47.886 2.646e-10 ***

Residuals 116 5.0618 0.0436

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Then we compare the adjusted R2 of the logtransformed and original model (helimod from
assignment 3). We compare the complete models.
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> summary(loghelimod)$adj.r.squared

[1] 0.6625815

> helimod <- lm(flighttime ~ size + wing + clip)

> summary(helimod)$adj.r.squared

[1] 0.7028989

The adjusted R2 of this model is 0.663, while the complete model without the log transforma-
tion had an adjusted R2 of 0.703. The alternative model does thus have a worse fit.

A short reminder (from Wikipedia): R2 is the proportion of variability in a data set that is
accounted for by the statistical model, and it provides a measure of how well future outcomes
are likely to be predicted by the model. R2 = 1 − SSerr/SStot, where SStot and SSerr = the
total and residual sums of squares. Adjusted R2 is a modification of R2 that adjusts for the
number of explanatory terms in a model: R2 adj = 1−SSerr/SStot ∗ dft/dfe, where dft and dfe
= the total and residual degrees of freedom.

2. The regression can again be written in the form of a multiple regression model

log(flighttime) = µ+αsmallxsmall

+βupxup + βdownxdown

+γyesxyes

+ε

We can look at the untransformed response by taking the exponential of both sides:

flighttime = eµ+αsmallxsmall+βupxup+βdownxdown+γyesxyes

= eµ+αsmallxsmalleβupxupeβdownxdowneγyesxyes

Because each x is either 0 or 1, each component of the formula will multiply the flighttime by
for example either eα∗1 = eα or eα∗0 = 1.

The summary table provides all estimates.

> summary(loghelimod)

Call:

lm(formula = logflighttime ~ size + wing + clip)

Residuals:

Min 1Q Median 3Q Max

-0.47272 -0.14327 0.03741 0.12800 0.56625

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 2.35093 0.04249 55.326 < 2e-16 ***

sizesmall -0.05110 0.03801 -1.345 0.181

wingdown -0.52747 0.04655 -11.332 < 2e-16 ***

wingup -0.57401 0.04655 -12.332 < 2e-16 ***

clipyes -0.26392 0.03801 -6.944 2.41e-10 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2082 on 115 degrees of freedom

Multiple R-squared: 0.6739,Adjusted R-squared: 0.6626

F-statistic: 59.42 on 4 and 115 DF, p-value: < 2.2e-16

We see that the estimated effect of attaching a clip is e−0.264 = 0.768, or 76.8% of the flighttime
without a clip.

The estimated effect of a small helicopter is e−0.051 = 0.95, thus a small helicopter falls to the
ground 5% faster relative to a large helicopter.

3. Confidence intervals are computed using confint(). The optional argument (level) allows
one to specify the confidence interval required, but we will accept the default which give us
95% confidence intervals.

> confint(loghelimod)

2.5 % 97.5 %

(Intercept) 2.2667584 2.43509676

sizesmall -0.1263839 0.02418249

wingdown -0.6196716 -0.43526624

wingup -0.6662135 -0.48180810

clipyes -0.3392007 -0.18863437

To transform these to confidence intervals in percent, we take the exponential and multiply by
100.

> exp(confint(loghelimod))*100

2.5 % 97.5 %

(Intercept) 964.80753 1141.69233

sizesmall 88.12765 102.44773

wingdown 53.81211 64.70924

wingup 51.36498 61.76656

clipyes 71.23394 82.80892

Note that this does not make any sense for the intercept.
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Problem 2
We download the data set and split it into two parts. skip = 1 allows us to skip one row (the
one with variable explanations) in the data set betfore we start reading data into R.

> grades <- read.csv("Z:/folder/Grade_prediction_data_2015.csv", skip = 1)

> trainingset <- grades[complete.cases(grades),]

> validationset <- grades[complete.cases(grades[,-2])&is.na(grades$grade),]

> attach(trainingset)

1. We first make a scatterplot of all variables.

> pairs(grades[, -1])
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Then we estimate all pairwise correlations.

> round(cor(grades[,sapply(grades,is.numeric)],use="complete.obs"), 2)

grade lectures assignments nassign reading training alcohol

grade 1.00 0.00 -0.08 0.46 0.13 0.07 -0.13

lectures 0.00 1.00 0.22 0.29 0.13 0.06 -0.23

assignments -0.08 0.22 1.00 0.31 0.39 0.08 -0.07

nassign 0.46 0.29 0.31 1.00 0.26 0.15 -0.13

reading 0.13 0.13 0.39 0.26 1.00 -0.12 0.11

training 0.07 0.06 0.08 0.15 -0.12 1.00 0.02

alcohol -0.13 -0.23 -0.07 -0.13 0.11 0.02 1.00

facebook 0.10 -0.25 -0.09 0.02 -0.05 0.13 0.04

fbfriends -0.06 -0.14 -0.08 -0.10 -0.05 0.03 0.29

gaming 0.14 -0.12 -0.30 -0.26 -0.28 -0.04 0.02

work -0.01 0.05 0.07 0.08 0.08 0.00 0.07

age -0.33 -0.13 -0.09 -0.28 0.04 -0.08 0.20

sleep 0.02 0.05 0.04 -0.12 0.09 0.17 -0.15

motivation 0.58 0.26 0.18 0.54 0.42 0.00 -0.03

facebook fbfriends gaming work age sleep motivation

grade 0.10 -0.06 0.14 -0.01 -0.33 0.02 0.58

lectures -0.25 -0.14 -0.12 0.05 -0.13 0.05 0.26

assignments -0.09 -0.08 -0.30 0.07 -0.09 0.04 0.18

nassign 0.02 -0.10 -0.26 0.08 -0.28 -0.12 0.54

reading -0.05 -0.05 -0.28 0.08 0.04 0.09 0.42

training 0.13 0.03 -0.04 0.00 -0.08 0.17 0.00

alcohol 0.04 0.29 0.02 0.07 0.20 -0.15 -0.03

facebook 1.00 0.04 -0.01 0.05 -0.27 0.13 -0.06

fbfriends 0.04 1.00 -0.25 0.14 -0.12 -0.09 -0.07

gaming -0.01 -0.25 1.00 -0.22 -0.05 -0.02 -0.05

work 0.05 0.14 -0.22 1.00 -0.01 -0.06 0.04

age -0.27 -0.12 -0.05 -0.01 1.00 -0.03 -0.33

sleep 0.13 -0.09 -0.02 -0.06 -0.03 1.00 0.02

motivation -0.06 -0.07 -0.05 0.04 -0.33 0.02 1.00

In multiple regression we assume no or little multicollinearity (correlaion among explanatory
variables). The variables motivation and nassign, motivation and reading, and assignments
and reading seem to be somewhat positively correlated. All other correlations are lower and
should not cause any problems in our multiple regression. However, even correlations as low as
0.28 has been found to bias analyses (Graham 2003 Ecology). Collinearity may cause (1) inac-
curate model parameterization, (2) decreased statistical power, and (3) exclusion of significant
predictor variables during model selection. With highly correlated explanatory variables care
should be taken when contructing models. Here we will just keep all variables in the analyses.
However, with very highly correlated variables (e.g. > 0.7) one should use biological knowledge
to construct the model that makes best sense while avoiding highly correlated variables in the
same model.

2. We start by fitting the full model with all relevant additive terms. Then we examine
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the parameter estimates (using summary()) and the significance of each term using F-tests
(drop1() command). A priori we exclude the variables facebook, fbfriends and work as we do
not see how these variables may affect the grade of students when we have direct measures of
time spent studying for the course. Partner was considered irrelevant for the grades of student.

> # Fit

> mod0 <- lm(grade ~ sex + course + lectures + assignments +

+ nassign + reading + training + alcohol +

+ gaming + age + sleep + motivation)

> # Paramter estimates

> summary(mod0)

Call:

lm(formula = grade ~ sex + course + lectures + assignments +

nassign + reading + training + alcohol + gaming + age + sleep +

motivation)

Residuals:

Min 1Q Median 3Q Max

-2.5858 -0.6735 -0.0567 0.5901 2.5633

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.32257 2.72378 0.853 0.397160

sexmale -0.63877 0.39095 -1.634 0.107434

courseMA0001 0.40448 0.80786 0.501 0.618396

courseMA1101 1.25320 1.11032 1.129 0.263449

courseTMA4100 1.83546 1.36699 1.343 0.184342

lectures -0.28484 0.12221 -2.331 0.023090 *

assignments -0.29257 0.10832 -2.701 0.008939 **

nassign 0.27118 0.11402 2.378 0.020538 *

reading 0.12302 0.22753 0.541 0.590698

training 0.05379 0.05096 1.056 0.295348

alcohol -0.03470 0.03975 -0.873 0.386039

gaming 0.31647 0.16513 1.917 0.059989 .

age -0.06778 0.10227 -0.663 0.510027

sleep 0.03474 0.11098 0.313 0.755309

motivation 0.29104 0.07730 3.765 0.000377 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.091 on 61 degrees of freedom

Multiple R-squared: 0.5426,Adjusted R-squared: 0.4376

F-statistic: 5.169 on 14 and 61 DF, p-value: 2.8e-06

> # F-tests

> drop1(mod0, test="F")

Single term deletions

Model:
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grade ~ sex + course + lectures + assignments + nassign + reading +

training + alcohol + gaming + age + sleep + motivation

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 72.671 26.596

sex 1 3.1804 75.852 27.852 2.6696 0.1074337

course 3 3.6305 76.302 24.301 1.0158 0.3919556

lectures 1 6.4717 79.143 31.080 5.4323 0.0230898 *

assignments 1 8.6906 81.362 33.181 7.2949 0.0089393 **

nassign 1 6.7388 79.410 31.336 5.6565 0.0205378 *

reading 1 0.3483 73.020 24.960 0.2923 0.5906980

training 1 1.3273 73.999 25.972 1.1141 0.2953475

alcohol 1 0.9081 73.579 25.540 0.7623 0.3860387

gaming 1 4.3758 77.047 29.040 3.6730 0.0599891 .

age 1 0.5232 73.195 25.141 0.4392 0.5100269

sleep 1 0.1168 72.788 24.718 0.0980 0.7553094

motivation 1 16.8897 89.561 40.478 14.1771 0.0003765 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The F-values tests if the fit of your model changes if you would remove that explanatory vari-
able, and the sums of squares tells us how much the sum of squares would change; the smaller
the change in sum in squares, the smaller the F-value.

We decided to use a step-wise approach where we remove all non-significant terms in one go,
then try to add each of the removed variables to the new model using add1().

Another popular approach is to remove the explanatory variable with the lowest F-value in the
drop1()-table in each step (e.g. using mod1 <- update(mod0, .~.-sleep) until all variables
are significant. Stepwise approaches are generally problematic due to the problem of multiple
testing (i.e. 1 out of 20 tests will be significant by chance).

> mod1 <- lm(grade ~ lectures + assignments +

+ nassign + motivation)

> add1(mod1, .~. + sex + course + reading + training + alcohol +

+ gaming + age + sleep, test="F")

Single term additions

Model:

grade ~ lectures + assignments + nassign + motivation

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 87.021 20.292

sex 1 0.5118 86.509 21.843 0.4141 0.52199

course 3 4.2055 82.816 22.527 1.1510 0.33493

reading 1 0.4452 86.576 21.902 0.3599 0.55048

training 1 0.4315 86.590 21.914 0.3488 0.55667

alcohol 1 2.7686 84.253 19.834 2.3003 0.13386

gaming 1 4.1135 82.908 18.612 3.4731 0.06657 .
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age 1 2.4535 84.568 20.118 2.0309 0.15857

sleep 1 0.7693 86.252 21.617 0.6244 0.43210

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

None of the excluded variables seems to affect the students grades. We then check whether the
model may be further simplified.

> drop1(mod1, test="F")

Single term deletions

Model:

grade ~ lectures + assignments + nassign + motivation

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 87.021 20.292

lectures 1 3.7109 90.732 21.466 3.0277 0.086188 .

assignments 1 7.7689 94.790 24.791 6.3386 0.014071 *

nassign 1 10.1606 97.182 26.685 8.2900 0.005265 **

motivation 1 27.2131 114.234 38.971 22.2030 1.185e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Lectures no longer significantly affect students grades and we remove this variable. We then
examine the parameter estimates of the selected model.

> mod2 <- lm(grade ~ assignments + nassign + motivation)

> summary(mod2)

Call:

lm(formula = grade ~ assignments + nassign + motivation)

Residuals:

Min 1Q Median 3Q Max

-2.12601 -0.81429 0.06387 0.65871 3.08808

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.66362 0.74646 0.889 0.37695

assignments -0.25233 0.09194 -2.745 0.00764 **

nassign 0.26859 0.10270 2.615 0.01085 *

motivation 0.29946 0.06698 4.471 2.84e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.123 on 72 degrees of freedom
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Multiple R-squared: 0.4289,Adjusted R-squared: 0.4051

F-statistic: 18.03 on 3 and 72 DF, p-value: 7.937e-09

We see that highly motivated students which complete many assignments perform better on
the exam. On the other hand, students which spend a lot of time with assignments each week
perform less well on the exam. This effect might at first glance seem suprising. However, it
is likely that the students which spend a lot of time to complete assignments are those that
struggle a lot with the course. These students most likely perform much better on the exam
than if they had not spent a lot of time with assignments. Still, on average they perform less
well than students which conquer the course stright away.

3. Finally we predict the grades of students with missing values in the data set.

> round(predict(mod2,validationset))

3 5 6 10 15 16 17 18 19 21 23 24 25 27 29 31 33 40 42 43

2 4 4 3 2 3 2 2 3 3 3 2 3 3 4 4 4 5 4 4

The predictions are all between 1 and 6 and seems to make sense. However, generally this
model could predict grades above 6. The adjusted R2 of the final model is 0.405, not much
worse than the full model in task 1 (0.438). With only 40.5% of the variation in student grades
explained by our model we should not expect the predictions to be to accurate.
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