
Assignment 10, ST2304

Problem 1 Several hypotheses have been proposed for how blood types in humans are de-
termined. We now know that the observable phenotypes A, B, AB and 0 corresponds to a
number of underlying genotypes at a single triallelic locus listed in Table 1 (under hypotheis
1). In handout 2 we saw how the this hypothesis could be tested against data assuming that
the population is in Hardy-Weinberg equilibrium by maximising the likelihood function for the
observed counts (the rigthmost column) numerically using the methods in handout 5.

Until 1924, a competing hypothesis which we shall consider here (see Crow, 1993, for an
historical account of this) was that blood types were determined by two diallelic loci, with
a dominant allele A at the �rst locus determining the A antigen and a dominant allele B at
the second locus determining the B antigen (hypothesis 2 in Table 1). The probabilities of
observations in the four phenotypic categories are then functions of two unknown parameters,
the allele frequency at each of the two loci. We choose to work with the allele frequencies pa
and pb of the recessive alleles.

The proability that both loci are homozygeous for the recessive alleles a and b is then p2ap
2
b .

This assumes random association between loci, so called linkage equilibrium or gametic phase
equilibrium and not only Hardy-Weinberg equilibrium at each respective loci. The probability
that at least one copy of the dominant allele A is present at the �rst locus (the genotype A-,
that is, either AA or Aa) is (1 − pa)

2 + 2pa(1 − pa) = 1 − p2a. Thus, the probability of the
genotypes A-bb is (1− p2a)p

2
b .

Hypothesis 1 Hypothesis 2 Observed
i Phenotype Genotype Probability pi Genotype Probability pi counts Xi

1 A AA, A0 p2A + 2pApO A- bb (1− p2a)p
2
b 44

2 B BB, B0 p2B + 2pBpO aa B- p2a(1− p2b) 27
3 AB AB 2pApB A- B- (1− p2a)(1− p2b) 4
4 0 00 p2O aabb p2ap

2
b 88

Table 1: Underlying hypothetical genotypes and genotype frequncies corresponding to observ-
able blood types in humans and observed counts from an African population.

1. First �t the model represented by hypothesis 1 to the observed counts in Table 1 using
the code listed in handout 2. Also compute approximate standard errors of the estimates
of the allele frequencies using the method given in section 2.1 in handout 5.

2. Next modify the function lnL and multinomialprobs so that the model corresponding
to hypothesis 2 can be �tted to the data. What are the MLEs of the allele frequencies pa
and pb? Also compute the standard errors of these estimates.

Hint: You may need to supply �box-contraints� on the parameters when using optim,
for example, lower=c(.001,.001),upper=c(.999,.999), otherwise optim may try to
evaluate the log likelihood outside the permitted parameter values which may cause errors.
Alternatively, try speci�ng reasonable starting values for the parameters close to the
maximum likelihood estimates.

3. What are the expected number of observations of each of the four observable bloodtypes
based on this alternative model?

4. Compute the chi-square statistic for the goodness-of-�t test of the model. Can you reject
this model based on the obseved counts? How does this compare with goodness-of-�t test
for hypothesis 1 in handout 2?
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5. Would you be able to assess the goodness-of-�t of a model involving three instead of two
unknown parameters?

Problem 2 In this exercise we shall reanalyse the data used in problem 3 in assignment 7.
First load the data into R using the commnad

moose <- read.table("http://www.math.ntnu.no/~jarlet/statmod/ovul2.dat")

1. Instead of �tting the model used in assignment 7 using the glm function, �rst write a
likelihood function for model

probit p = β0 + β1x (1)

and maximise the log likelihood numerically. Verify that you obtain the same estimates
of β0 and β1.

Hints: You may need to study the example listed in section 3 in handout 5 but note that
this model involves a probit and not a logit link so p is a di�erent function of the linear
predictor. Which function? Also you'll need to take into account the number of bernoulli
trials on which each observation is based when computing the log likelihood.

2. Equation (1) implies that
p = φ(β0 + β1x) (2)

where φ is the cumulative standard normal density. In assignment 7 we saw that this
model �tted the data poorly. A possible explanation for this may be that not all the
individuals but only a proportion q ovulates during the rut each year. If we treat q as an
unknown parameter and build this assumption into the model the relationship between
ovulation probability p and time x becomes

p = qφ(β0 + β1x) (3)

Modify the code you wrote in the previous point so that the likelihood function instead
involves the three unknown parameters q, β0, β1 and the above relationship between p and
x and re�t the model.

Hint: The MLEs for the simple model not involving q provide reasonable starting values
for β0 and β1.

3. Compute the standard errors of q, β0 and β1.

4. Make a plot of the data, and curves representing the alternative models.

5. Are the models considered above nested? What is the change in two times the log like-
lihood? Can you based on this reject (1) in favour of (3)? (See section 2.2. in handout
5).
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