
Exercises: Week 5. Regression
Bob O’Hara

4 February 2018

Code Workthrough

This is the analysis of the data from the lectures, on the sizes of birds and their eggs. It presents the code to
run regressions and look at the results.

First, we read in the data (with read.csv()),and then plot it (the par() function sets some parameters for the
plot: in this case the margin sizes). You will have to download the data from Blackboard (unless I can get
access to the wiki!), and then put it in the working directory (use getwd() in R to check where that is, and
setwd() if you want to change it).
BirdEggs <- read.csv(file="BirdEggs.csv", stringsAsFactors = FALSE)

par(mar=c(4.1,4.1,1,1))
plot(BirdEggs$logFemaleMass, BirdEggs$logEggMass,

xlab="Log body mass", ylab="Log egg mass",
main="", lwd=3, col="darkgreen")

2 4 6 8 10

0
2

4
6

Log body mass

Lo
g

eg
g

m
as

s

plot(BirdEggs$logFemaleMass, BirdEggs$logEggMass, type="n",
xlab="Log body mass", ylab="Log egg mass", main="", lwd=3)
text(BirdEggs$logFemaleMass, BirdEggs$logEggMass, BirdEggs$species, cex=0.5)

We should look at this to see if (a) a linear model makes sense, (2) if there are likely to be any problems

1

(e.g. there might be a couple of species with egg sizes that are too large or too small, but nothing severe). We
can make a mental note to check these later.

Now we fit the model. The R function to fit a regression model is lm(). The main part of this is the formula,
which uses a notation that is more convenient than writing out the equations. If we want to regress Y against
X (i.e. fit the model Yi = α+ βXi + εi), then we write this as Y ~ X. This will get more complicated later
(e.g. if we want to regress Y against X and Z then the model is written Y ~ X + Z).
mod <- lm(logEggMass ~ logFemaleMass, data=BirdEggs)

We now have an R object, mod, which has enough information about the model. if you want to, you can use
str(mod) to see what it contains, but you usually shouldnt’t have to go there.

So, what is the model? We can get the coefficients with the coef() function, and the residual variance (σ̂2)
with sigma():
round(coef(mod), 2)

(Intercept) logFemaleMass
-1.25 0.76
round(sigma(mod), 2)

[1] 0.46

I have used round() to give the results to 2 decimal places: if you report results to 7 decimal places (for
example), it is harder for the reader to read and interpret the results. This is especially bad if the reader is
marking your work. So, always think about not presenting too maky significant figures! Anyway, the model is

µi = −1.25 + 0.76xi + εi

yi ∼ N(µi, 0.46)

We can also get confidence intervals with confint(), which show that, for example, the slope is fairly well
estimated (i.e. the confidence interval is not too wide)
round(confint(mod), 2)

2.5 % 97.5 %
(Intercept) -1.45 -1.05
logFemaleMass 0.73 0.79

That was (hopefully) not painful. But it is obviously not enough. We can get a summary of the model with
the, um, summary() function:
summary(mod)

##
Call:
lm(formula = logEggMass ~ logFemaleMass, data = BirdEggs)
##
Residuals:
Min 1Q Median 3Q Max
-1.31116 -0.32185 -0.06145 0.25111 1.47630
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.25139 0.10174 -12.30 <2e-16 ***

2

logFemaleMass 0.76074 0.01645 46.23 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4554 on 235 degrees of freedom
Multiple R-squared: 0.9009, Adjusted R-squared: 0.9005
F-statistic: 2137 on 1 and 235 DF, p-value: < 2.2e-16

The Call is just the function that is being summarised. The Residuals is a summary of the residuals. The
next part - the coefficients - is more interesting. It gives the coefficients and their standard errors, plus a test
that can give you some nice stars. The final block has a few useful statistics: the residual standard error, and
the R2, so we can see that logFemaleMass explains about 90% of the variation in the data: this is a good
model, as it explains most of the variation. In practice, the summary() is usually one of the first things to
look at, as it tells you the parameter values (so we can eyeball them to see which are large), and a summary
of fit, through the R2.

Now we have the model, and an idea of what it looks like, we can check how well it fits. First, plot the
residuals against the fitted values:
highlight if the residual is aboe 1.2 or less than -1.0
HighlightPoints <- resid(mod) > 1.2 | resid(mod) < -1
par(mar=c(4.1,4.1,1,1), lwd=2)
plot(fitted(mod), resid(mod),

xlab="Fitted log egg mass", ylab="Residual",
main="", lwd=3, col="lightblue")

points(fitted(mod)[HighlightPoints], resid(mod)[HighlightPoints], col=2, pch=16)

0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Fitted log egg mass

R
es

id
ua

l

Here fitted(mod) gets the fitted values, and resid(mod) gets the residuals. We can see that the model looks
OK: there may be some downward curvature, and there are a few points at the bottom and top that might be
a problem: these have been highlighted in red (note how I did this: HighlightPoints is a logical variable that
say whether the points should be highlighted. When I plot them, fitted(mod)[HighlightPoints] only plots the
points where HighlightPoints is TRUE. If you want to play with coding R, try to work out how to colour

3

them without this extra function, i.e. by using different coloiurts for different points in the plot()). Overall, I
think this would be fine.

We can look at a normal probability plot:
par(mar=c(4.1,4.1,1,1), lwd=2)
qqnorm(resid(mod))
qqline(resid(mod))

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5 Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

The second line adds a line, so we can see what we would expect. This does not look perfect: it’s reasonably
straight, but there might be a couple of outliers at the top.

We can also look to see if there are any influential observations, by plotting Cook’ D:
par(mar=c(4.1,4.1,1,1), lwd=2)
plot(fitted(mod), cooks.distance(mod),

xlab="Fitted log egg mass", ylab="Cook' D",
main="", lwd=3, col="lightblue")

4

0 2 4 6

0.
00

0.
01

0.
02

0.
03

0.
04

Fitted log egg mass

C
oo

k'
 D

Basically, all of the values are small, so there is nothing influential.

R has a plot.lm() function for linear models that plots a few useful plots, so you can use ‘ r plot(mod,
which=1:6)‘ to see them all (which=1:6 controls which plots you see: some are more useful than others).
When we do this, we see that R marks out a few points that might be worth taking another look at: points
24, 25, 71, 232. In the interst of completeness we can look at these, but first add the residuals to the data:
BirdEggs$Resid <- resid(mod)
BirdEggs[c(24, 25, 71, 232),]

species logEggMass logFemaleMass Resid
24 Apteryx australis 6.0637852 7.991254 1.235944
25 Apteryx owenii 5.6185876 7.090077 1.476304
71 Cuculus saturatus 0.7419373 4.343805 -1.311159
232 Tyto alba 3.2809112 4.043051 1.456609

The first two (24 & 25) are Kiwis, which we know have large eggs. The third is a cuckoo, which has a smaller egg
size than expected (there could be a biological explanation for this: see https://doi.org/10.1093/beheco/arg104
for much more). The last is the barn owl, which is a bit surprising. We can take a look at species with a
similar size:
AboutSameSizeAsBarmOwl <- BirdEggs$logFemaleMass < 4.1 & BirdEggs$logFemaleMass > 4.0
BirdEggs[AboutSameSizeAsBarmOwl,]

species logEggMass logFemaleMass Resid
53 Caprimulgus vociferus 1.945910 4.043051 0.1216082
65 Coccyzus erythropalmus 1.840550 4.025352 0.0297124
120 Merops apiaster 1.840550 4.043051 0.0162477
169 Picoides albolarvatus 1.481605 4.077537 -0.3689323
232 Tyto alba 3.280911 4.043051 1.4566093

Note first that two have exactly the same size as a barn owl (can you work out why?). One of these is the
European bee-eater, the other is a whip-poor-will. The other species are a woodpecker and a cuckoo. if you

5

https://doi.org/10.1093/beheco/arg104

are a birder, you might be surprised at this: barn owls certainly look much bigger! According to Wikipedia,
barn owls weigh 430 – 620 g, so they are about 10 times heavier. We can check to see what would happen if
we used a better estimate of its size (500g, which is about right) using predict(). We need to give R a data
frame with some new data in it:
BarnOwl <- data.frame(logFemaleMass=log(500))
predict(mod, newdata=BarnOwl, interval = "prediction")

fit lwr upr
1 3.476283 2.577195 4.375371

So, the log egg mass from the data (3.28) is close to the fitted value. This is, then, presumably a typo (it is
actually in the table I got this from: I did check!), and should be corrected. As far as the modelling goes, the
other species are fine: they are not so extreme that they will affect the model, and they seem to be “real”
values.

Problem 1

We know that larger mammals tend to have bigger brains, but also that humans have larger brains than
expected. We argue that this is because we are more intelligent than other animals. If that is so, then we
might expect a similar pattern to emerge in birds, where parrots and corvids are more intelligent than other
birds.

We can dowmload the data from the web. If the link below does not work, go here: http://onlinelibrary.wiley.
com/doi/10.1002/ece3.2961/full#ece32961-sup-0001 and use the link for ece32961-sup-0001-TableS1.xlsx
(i.e. copy the link, and use that as the Link variable). Note that in the un-transformed data, the brain and
body mass are both reported in grams
the gdata package has the read.xls function, which can read Excel files.
Just treat read.xls like read.csv.
library(gdata)
Link1 <- "http://onlinelibrary.wiley.com/store/10.1002/ece3.2961/asset/"
Link2 <- "supinfo/ece32961-sup-0001-TableS1.xlsx?"
Link3 <- "v=1&s=9bde1c55d903299f108d41167e57f9b63350dbc1"
Link <- paste0(Link1, Link2, Link3)
BirdBrains <- read.xls(Link, stringsAsFactors=FALSE, verbose = FALSE)
names(BirdBrains) <- gsub("\\.\\..*", "", names(BirdBrains)) # tidy up names
BirdBrains$logBodyMass <- log(BirdBrains$Body.mass)
BirdBrains$logBrainMass <- log(BirdBrains$Brain.mass)

What is the relationship between the log of body size and log of brain size? How good is the model fit, and
does it look like there any problems? Where do corvids (Family Corvidae) and parrots (Order Psitacciformes)
fit into this relationship (I don’t expect you to model them, yet)? For the parrots, predict what their brain
size would be if they were normal birds.

Problem 2

We can simulate some bad data and look at what happens. To simulate some “good” data, we can do this:
alpha <- 5
beta <- 5
sigma <- 1 # standard deviation

x <- runif(100, 0, 1) # random uniform distribution

6

http://onlinelibrary.wiley.com/doi/10.1002/ece3.2961/full#ece32961-sup-0001
http://onlinelibrary.wiley.com/doi/10.1002/ece3.2961/full#ece32961-sup-0001

mu <- alpha + beta*x
y <- rnorm(length(mu), mu, sigma)

So, fit the model to the data and take a (quick) look at the model fit. Then, we can simulate “bad” models:

yi = α+ βx2
i + εi

yi = (α+ βx2
i + εi)2

For each of these, simulate a data set and then fit a linear model and look at the residuals. Then
try to find a “good” Box-Cox transformation (https://www.isixsigma.com/tools-templates/normality/
making-data-normal-using-box-cox-power-transformation/) on each of these, and see how it performs.
You could also try other transformations, and explore how the Box-Cox transformation behaves. The MASS
package in R has a boxcox() function if you want to find an optimum transformation, but also try a few
yourself, so you can see what it happening.

Problem 3

I briefly showed the data on healthcare expenditure and life expectancy. The data is available online (see the
link below). Your task is to try to model this using simple linear regression and transformations, so that you
can predict what the life expectancy of US citizens should be. Note that I do not expect to see a perfect
model, but you should report what you try, what problems you found in the model (and data), and why your
eventual model might not be perfect.

The code for getting the data is a bit fiddly, but this is what real data analysis is like! I have commented out
the code to plot the data - you can do that yourselves. You may have to install hte RCurl and XML packages.
library(RCurl)
library(XML)
First we need to extract the table from the webpage. This is a bit tricky.
fileURL1 <- "https://www.ineteconomics.org/perspectives/blog/"
fileURL2 <- "the-link-between-health-spending-and-life-expectancy"
fileURL3 <- "-the-us-is-an-outlier"
fileURL <- paste0(fileURL1, fileURL2, fileURL3)
xData <- getURL(fileURL, ssl.verifyPeer=FALSE)
rawdata <- readHTMLTable(xData, stringsAsFactors=FALSE)[[1]]
Now we need to format the data extracted from the html page
names(rawdata) <- gsub("\n", "", names(rawdata))
names(rawdata) <- gsub("\r", "", names(rawdata))
names(rawdata) <- gsub("\t", "", names(rawdata))
rawdata$`Life exectancy` <- as.numeric(rawdata$`Life exectancy`)
rawdata$`Health Spending per capita` <-

as.numeric(gsub(",", "", gsub(" \\$", "",
rawdata$`Health Spending per capita`)))

Finally, plot the data
plot(rawdata$`Health Spending per capita`, rawdata$`Life exectancy`, type="n",
xlab="Health Spending per capita ($)", ylab = "Life Expectancy")
text(rawdata$`Health Spending per capita`, rawdata$`Life exectancy`, rawdata$Country, cex=0.7)

7

https://www.isixsigma.com/tools-templates/normality/making-data-normal-using-box-cox-power-transformation/
https://www.isixsigma.com/tools-templates/normality/making-data-normal-using-box-cox-power-transformation/

	Code Workthrough
	Problem 1
	Problem 2
	Problem 3

