
ST2304 Exercises Week 10: Selecting Models
Bob O’Hara

14 March 2018

Model Testing in R

We can use the Bird Brains data to look at different ways of comparing models. First we need the data:
BirdBrains <- read.csv("../Data/BirdBrains.csv")
BirdBrains$Mode.of.development <- factor(BirdBrains$Mode.of.development)
BirdBrains$M.of.Dev <- c("precocial", "semi-precocial", "semi-altricial", "altricial")[BirdBrains$Mode.of.development]
BirdBrains$M.of.Dev. <- factor(BirdBrains$M.of.Dev, levels =

c("altricial", "semi-altricial",
"semi-precocial", "precocial"))

Covars <- c("Maximum.lifespan", "Incubation.length",
"Clutch.size", "Mean.latitude","logBodyMass", "M.of.Dev.")

Scale the continuous covariates (messily)
ToScale <- Covars[sapply(Covars, function(wh, df)

is.numeric(df[,wh]), df=BirdBrains)]
BirdBrains[,ToScale] <- scale(BirdBrains[,ToScale])

ANOVA

First, we will use ANOVA to look at the effect of maximum lifespan. We will include body mass, as we know
this has a big effect. So we fitrst fit a model with log body mass, and then add maximum lifespan:
mod.bm <- lm(logBrainMass~logBodyMass, data=BirdBrains)
mod.lspan <- lm(logBrainMass~logBodyMass + Maximum.lifespan,

data=BirdBrains)

We can use anova() to compare models in different ways. If we are comparing two models, then we give
both models as arguments, with the smallest first:
anova(mod.bm, mod.lspan)

Analysis of Variance Table

Model 1: logBrainMass ~ logBodyMass
Model 2: logBrainMass ~ logBodyMass + Maximum.lifespan

Res.Df RSS Df Sum of Sq F Pr(>F)
1 382 38.413
2 381 36.581 1 1.8322 19.083 1.616e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova() tests whether the second model is better than the first (more generally, you can give it more than 2
models, and it goes through in order and compares each model to the previous one). We see that adding
maximum lifepsan to the model improves the model (or to be strict, we are very unlikely to get the likelihood
we estimate in the model with maximum lifespan if the data were generated by a process where maximum
lifespan did not have an effect: the probability of getting at least this difference in the likelihoods if lifespan
did not have an effect is about 0.0016%.

1

Note that the models have to be nested, i.e. the second one has to be formed by adding a term (or terms) to
the first.

A simpler way to use anova() is to let R work out the models, and test them in the order that they are given:
anova(mod.lspan)

Analysis of Variance Table

Response: logBrainMass
Df Sum Sq Mean Sq F value Pr(>F)

logBodyMass 1 428.70 428.70 4465.000 < 2.2e-16 ***
Maximum.lifespan 1 1.83 1.83 19.083 1.616e-05 ***
Residuals 381 36.58 0.10

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, because the model is written logBrainMass ~ logBodyMass + Maximum.lifespan, R fits the model
with the intercept, then adds logBodyMass and then adds Maximum.lifespan. Contrast that to the model
where the terms are added in the opposite order:
mod.lspanRev <- lm(logBrainMass~Maximum.lifespan + logBodyMass,

data=BirdBrains)
anova(mod.lspanRev)

Analysis of Variance Table

Response: logBrainMass
Df Sum Sq Mean Sq F value Pr(>F)

Maximum.lifespan 1 249.724 249.724 2600.9 < 2.2e-16 ***
logBodyMass 1 180.808 180.808 1883.2 < 2.2e-16 ***
Residuals 381 36.581 0.096

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can also add interactions:
mod.ints <- lm(logBrainMass~logBodyMass*Maximum.lifespan,

data=BirdBrains)
anova(mod.ints)

Analysis of Variance Table

Response: logBrainMass
Df Sum Sq Mean Sq F value Pr(>F)

logBodyMass 1 428.70 428.70 4503.7143 < 2.2e-16 ***
Maximum.lifespan 1 1.83 1.83 19.2481 1.489e-05 ***
logBodyMass:Maximum.lifespan 1 0.41 0.41 4.3035 0.03871 *
Residuals 380 36.17 0.10

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparing all subsets

If we just want to find a good model, we can compare all of the subsets. There are a few ways to do this in
R, here we’ll us the bestglm package. We have to give it a dataframe with the design matrix followed by the
response:

2

Covars <- c("Maximum.lifespan", "Mean.latitude",
"logBodyMass", "M.of.Dev.")

library(bestglm) # might need install.packages("bestglm")
UseData <- cbind(BirdBrains[,Covars], BirdBrains$logBrainMass)
AllSubsets <- bestglm(Xy=UseData, IC="AIC")

Morgan-Tatar search since factors present with more than 2 levels.
summary(AllSubsets$BestModel)

Call:
lm(formula = y ~ ., data = data.frame(Xy[, c(bestset[-1], FALSE),

drop = FALSE], y = y))

Residuals:
Min 1Q Median 3Q Max

-0.84246 -0.15423 0.00709 0.16466 0.71875

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.70139 0.01881 37.289 < 2e-16 ***
Maximum.lifespan 0.07791 0.01955 3.985 8.10e-05 ***
logBodyMass 1.09634 0.02273 48.230 < 2e-16 ***
M.of.Dev.semi-altricial -0.02137 0.05752 -0.371 0.711
M.of.Dev.semi-precocial -0.31903 0.05495 -5.806 1.36e-08 ***
M.of.Dev.precocial -0.47993 0.03934 -12.201 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2546 on 378 degrees of freedom
Multiple R-squared: 0.9475, Adjusted R-squared: 0.9468
F-statistic: 1365 on 5 and 378 DF, p-value: < 2.2e-16

The function returns an object that has the best model (AllSubsets$BestModel): here we can see that it
has Maximum.lifespan, logBodyMass and M.of.Dev. as terms (and M.of.Dev. is a factor with 4 levels: the
parameters are contrasts to the first level).

The function also reports the best models with 0, 1, 2 etc. parameters (and puts a star by the best of the
best). Note that a lower AIC is better:
xtable::xtable(AllSubsets$Subsets)

% latex table generated in R 3.4.3 by xtable 1.8-2 package % Thu Mar 15 20:24:53 2018

Intercept Maximum.lifespan Mean.latitude logBodyMass M.of.Dev. logLikelihood AIC
0 TRUE FALSE FALSE FALSE FALSE -37.62 75.24
1 TRUE FALSE FALSE TRUE FALSE 442.03 -882.06
2 TRUE FALSE FALSE TRUE TRUE 520.44 -1032.88
3* TRUE TRUE FALSE TRUE TRUE 528.34 -1046.68
4 TRUE TRUE TRUE TRUE TRUE 528.86 -1045.72

We can see several other “good” models

Becuse we get the best model, we can do all the usual things with it:

3

plot(fitted(AllSubsets$BestModel), resid(AllSubsets$BestModel))

−1 0 1 2 3

−
0.

5
0.

0
0.

5

fitted(AllSubsets$BestModel)

re
si

d(
A

llS
ub

se
ts

$B
es

tM
od

el
)

Question 1

Back in Exercise 2 we looked at fitting polynomials to the life expectancy data. Now we can ask which is the
best model. First we need the data (if you can’t find it, download it from Blackboard BUT DON’T OPEN
IT IN ANY OTHER PROGRAMME!):
rawdata <- read.csv("../Data/LifeExpectancy.csv") # NOTE: the file path might be different!
NoSA <- rawdata[rawdata$Country!="South Africa",]

Now you can find out what order polynomial is the best. You should fit all of the models up to order 10, and:

• compare them using AIC and decide which model is best (remember: a lower value of AIC means a
better model, and generally AICs or BICs within 2 of each other are equivalent).

• compare the models using BIC. Do you get a different result?

There are a couple of ways to calculate AIC and BIC. One way is by hand. AIC is −2logLik + 2p, wher p is
the number of parameters:
mod0 <- lm(Life.exectancy~1, data=NoSA)
mod1 <- update(mod0, .~ . + Health.Spending.per.capita)
mod2 <- update(mod1, .~ . + I(Health.Spending.per.capita^2))
AIC.1 <- -2*logLik(mod1) + 2*mod1$rank

A nicer way to do this is to use the AIC function:
AIC(mod0, mod1, mod2)

df AIC
mod0 2 236.9086
mod1 3 215.9586
mod2 4 187.3340

Similarly, BIC is −2logLik + log(n)p, where n is the number of observation, so we can do these (the rank of
a model is the number of parameters, nobs() is the number of observations used to fit a model):

4

-2*logLik(mod1) + log(nobs(mod1))*mod1$rank

'log Lik.' 217.4339 (df=3)
CalcBIC <- function(mod) -2*logLik(mod) + log(nobs(mod))*mod$rank
BIC(mod1)

[1] 221.1716

The values may differ from each other by a constant, but this is fine as we only want to compare them to
each other (because of this we can add or subtract any constants).

Note: there is an idea called the principle of marginality which says that if you fit an interaction then you
should fit all of the main effects and lower order interactions (e.g. if you fit a model with A:B:C you need A,
B, C, A:B, A:C, and B:C). Similarly, if you fit a model with a polynomial of order p then you should also
include the polynomial terms for orders 1, 2, . . . , p− 1 (i.e. x, x2, x3 etc.). The reason for this is that if you
don’t do this then you make some arbitrary assumptions, e.g. that the slope of the curve is zero at the origin
(if you don’t include the linear term). This also means that you can change the origin (e.g. when you centre
the covariates) without changing the model.

Question 2

In Exercise 2 we looked at regression going bad. Now you get to see what happens when you test the different
models. This is the code for simulation (if you prefer, re-use the code you wrote before):
N <- 50
library(MASS)
muX <- c(0,0) # mean of bivariate distribution
Corr <- 0.5 # correlation
sigmaX <- matrix(c(1,Corr,Corr,1), nrow=2) # covariance matrix
x <- mvrnorm(N, muX, Sigma=sigmaX) # 2 columns: x[,1] & x[,2]

Simulate from a different model
N <- 50; alpha <- 0; sigma <- 1 # same throughout
beta1 <- -20
beta2 <- 5000

mu <- alpha + beta1*x[,1] + beta2*x[,2]
y <- rnorm(N, mu, sigma)
mod <- lm(y ~ x[,1] + x[,2])

For all of the following, fit a model with both x1 and x2, and use anova() to select the best model. Also
change the order of the variables in the model (i.e. also fit lm(y ~ x[,1] + x[,2]) and see if this changes
the anova()).

1. Simulate x1 and x2 from a standard normal distribution with no correlation. Then simulate the model
(above) with β1 = 1 and β2 = 1.

2. Simulate x1 and x2 from a standard normal distribution with correlation 0.7. Then simulate the model
(above) with β1 = 1 and β2 = 0, i.e. where there is no effect of β2.

3. Simulate x1 and x2 from a standard normal distribution with correlation 0.7. Then simulate the model
(above) with β1 = 1 and β2 = 1.

4. Now simulate x1 and x2 from a standard normal distribution with correlation -0.8. Then simulate the
model (above) with β1 = 5 and β2 = 5.

5

	Model Testing in R
	ANOVA
	Comparing all subsets

	Question 1
	Question 2

