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Before we start. . .

Number of Exercises: ceiling(N/2)

This week’s exercises don’t have to be handed in until after Easter
(I will out them up tomorrow)



Models

So far we have been fitting models, looking at how well they fit, and
(hopefully) working out what they mean. But we also often want to
compare models

I pick from a large number of models (QTLs)
I ask if one particular hypothesis explains the data



Why select models?

We could fit a model with every covariate in it

I plus all interactions

But these get big & difficult to interpret. So we only want to
important variables

Smaller models generally have smaller standard errors

I more precise



Two types of problem: two solutions

Testing a specific hypothesis

I does the temperature at which a cake is baked affect how
much you can break it?

I confirmatory

Finding a good model

I of these 106 genetic markers, which ones explain a trait?
I exploratory



Hypothesis Testing

e.g. does the temperature at which a cake is baked affect how much
you can break it?

The basic approach:

I fit a model with temperature
I fit a model without temperature

Compare them & see which fits better



Hypothesis Testing

Hypothesis Testing is asymmetrical. We ask “does is model without
the effect sufficient to explain the data?”



How to Do Statistical Hypothesis Testing

I get a null hypothesis (i.e. without the effect)
I get an alternative hypothesis (i.e. with the effect)
I Chose a test statistic (e.g. the likelihood)
I calculate the distribution of the test statistic if the null

hypothesis was true
I ask if the observed value of the statistic falls within the null

distribution
I if it does not, declare the null hypothesis wrong



Cake Testing

Null hypothesis: no factor explains the cake angle

Alternative hypothesis: angle can be explained by temperature

Test statistic: the likelihood



The Test statistic
We could use anything, but the likelihood makes theoretical sense

I the probability of the data given the model and parameter
estimates

Need to fit the model to get the parameter estimates:

mod.null <- lm(angle~1, data=cake)
round(coef(mod.null), 2)

(Intercept)
32.12

mod.alt <- lm(angle~temperature, data=cake)
round(coef(mod.alt), 2)

(Intercept) temperature.L temperature.Q temperature.C temperature^4
32.12 6.61 -0.39 -0.55 -1.30

temperature^5
-0.91



The Test statistic

Question is whether the alternative model explains the data better
than the null model, i.e. if the likelihood is higher

I us the ratio of likelihoods (or difference in log-likelihoods)

The likelihood is P(Y |θ̂) - the probability of the data given the
maximum likelihood estimates of the parameters.

With maximum likelihood, the data are random. We ask

I if we had an inifinite number of samples for the data, how often
would the alternative model be better than the null model

I (given the MLEs)



The Distribution of the Null Likelihood

simulate() simulates data from the model in mod.null

CalcLhood <- function(y, x) {
mod.null <- lm(y ~ 1)
mod.alt <- lm(y ~ x)
logLik(mod.alt) - logLik(mod.null)

}

# simulate the data from the (null) model
SimNull <- simulate(mod.null, nsim=1e3)
Lhood.null <- apply(SimNull, 2, CalcLhood,

x=cake$temperature)



Compare to Likelihoods

hist(Lhood.null, col="light blue", border=NA,
main="", xlim=c(0, 17))

Lhood.null
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If temperature has an effect, the likelihood should be higher



Compare to Likelihoods

hist(Lhood.null, col="light blue", border=NA, main="", xlim=c(0, 17))
abline(v=CalcLhood(cake$angle, cake$temperature), col=2, lwd=3)
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Here it is larger than all of the likelihoods



Without simulation

We know from statistical theory that the distribution of the ratio of
log-likelihoods should follow an F distribution, so we don’t need to
simulate it

The F distribution has 2 parameters, known a “degrees of freedom”.

I numerator degrees of freedom: how many extra parameters are
in the alternative model

I denominator degrees of freedom: how many parameters are
used to estimate σ̂2

I taken from the alternative model



With R

We can get R to make the comparison:

Analysis of Variance Table

Model 1: angle ~ 1
Model 2: angle ~ temperature

Res.Df RSS Df Sum of Sq F Pr(>F)
1 269 18143
2 264 16043 5 2100.3 6.9126 4.391e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test statistic is the F-ratio (and the p-value)



Degrees of Freedom

We have N data points. Each is a “degree of freedom” that we can
use in the estimation Each df can be spent to estimate one
parameter The rest are used to estimate the residual variance

e.g.

yi = α+ βxi + εi

2 parameters (α and β), so N − 2 can be used to estimate σ2

N − 2 is the residual degrees of freedom



Degrees of Freedom

If we compare 2 models, the difference in the residual degrees of
freedom is the number of extra parameters in the alternative model

I this is the degrees of freedom.

(the same as used in a χ2 test)



With R

We can get R to make the comparison:

Analysis of Variance Table

Model 1: angle ~ 1
Model 2: angle ~ temperature

Res.Df RSS Df Sum of Sq F Pr(>F)
1 269 18143
2 264 16043 5 2100.3 6.9126 4.391e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I df is the degrees of freedom for the model



RSS

NOT the Royal Statistical Society

The Residual Sum of Squares

I the log-likelihood for a normal distributiuon is

l(x|µ, σ2) = −n
2 log σ2 −

n∑
i=1

(xi − µ)2

2σ2

And the main bit is
∑n

i=1
(xi −µi )2

2σ2

which is just a sum of squares, and a variance term



Next

Analysis of Variance Table

Model 1: angle ~ 1
Model 2: angle ~ temperature

Res.Df RSS Df Sum of Sq F Pr(>F)
1 269 18143
2 264 16043 5 2100.3 6.9126 4.391e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So the RSS are (almost) likelihoods

I need to divide by an estimate of σ2

I this is the RSS for the largest model divided by its residual
degrees of freedom



Why an F distribution?

-2 times difference in likelihood between 2 (nested) models follows a
χ2 distribution

when we divide by the residual stanadrd deviation we add more
uncertainty

I but this also follows a χ2 distribution

The ratio of 2 independent χ2 distributions (divided by their degrees
of freedom) is an F distibution

I later we will see χ2 distributions in similar tests



The p-value
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The p-value is Pr(F > Fobs). Here it is NA

I so very unlikely



ANOVA made easier

We have just used anova() to compare 2 models, but it has
traditionally been used to compare several:

Analysis of Variance Table

Response: angle
Df Sum Sq Mean Sq F value Pr(>F)

temperature 5 2100.3 420.06 18.27 <2e-16 ***
recipe 2 135.1 67.54 2.94 0.05 *
replicate 14 10204.2 728.87 31.69 <2e-16 ***
Residuals 248 5703.3 23.00
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



ANOVA made easier

Each row is a test

Df Sum Sq Mean Sq F value Pr(>F)
temperature 5 2100.30 420.06 18.27 0.0000
recipe 2 135.09 67.54 2.94 0.0549
replicate 14 10204.24 728.87 31.69 0.0000
Residuals 248 5703.33 23.00

It compares a model with the terms above to one including that
term e.g. the replicate line compares

temperature + recipe

to

temperature + recipe + replicate



Why is ANOVA called ANOVA

ANOVA = Analysis of Variance

The Mean Sq is the mean square, i.e. Sum Sq/Df

I when the data cooperate, it is an estimate of the variance
explained by that effect

I so we can sometimes use the Mean Square to eyeball how
important a variable is



Exploring for Good Models

Sometiumes we don’t have strong hypotheses. Instead we might be
exploring which variables might have an effect

I our aim is to get a good model overall
I e.g. for prediction



What does a good model look like?

I Simple
I Fits the data well
I Understandable

We can measure simplicity and fit.

I Fit: likelihood
I Simplicity: number of parameters



The problem

A model with always fit better if you add a parameter

Key issue: is adding the extra parameter worth it?

ANOVA answers this by asking if the improvement from the extra
parameter can be explained as noise



Penalisation

Another way of looking at the problem: we measure model
adqequacy

I is the model good enough for what we want?

We penalise complicated models

I measure complexity by number of parameters

Find the ‘best’ model as one with optimum between fit & complexity



How to Penalise

There are several ways to penalise. Here I will mention two, which
chose different criteria

I AIC: Akaike’s Information Criterion
I BIC: Bayesian Information Criterion

AIC tries to find the model that best predicts thedata

BIC trues to find the model most likely to be true



AIC

Finds the model that would best predict replicate data

AIC = -2*Likelihood + 2*Number of Parameters



BIC

Finds the model which is most likely to be “true”

BIC = -2*Likelihood + log(N)*Number of Parameters

I log(n) = log(sample size)
I penalises more than AIC



Using AIC/BIC

Full Subset Selection

I calculate AIC/BIC for every model
I pick the best

Usually, if the values are within ~2 of each other, the models are
pretty similar.



Example: Trying to Explain Bird Brain Size
(we will get to the actual purpose of this study in a moment)

BirdBrains <- read.csv("../Data/BirdBrains.csv")
BirdBrains$Mode.of.development <- factor(BirdBrains$Mode.of.development)
BirdBrains$M.of.Dev <- c("precocial", "semi-precocial", "semi-altricial", "altricial")[BirdBrains$Mode.of.development]
BirdBrains$M.of.Dev. <- factor(BirdBrains$M.of.Dev, levels =

c("altricial", "semi-altricial",
"semi-precocial", "precocial"))

Covars <- c("Maximum.lifespan", "Age.at.first.reprodction",
"Incubation.length", "Clutch.size", "Mean.latitude",
"logBodyMass", "M.of.Dev.")

# Scale the continuous covariates (messily)
ToScale <- Covars[sapply(Covars, function(wh, df)

is.numeric(df[,wh]), df=BirdBrains)]
BirdBrains[,ToScale] <- scale(BirdBrains[,ToScale])

Look at:

I logBodyMass
I Maximum lifespan
I Age at first reprodction
I Incubation length
I Clutch size
I Mode of development
I Mean latitude



Fit the model
library(bestglm) # might need install.packages("bestglm")
UseData <- cbind(BirdBrains[,Covars], y=BirdBrains$logBrainMass)
AllSubsets <- bestglm(Xy=UseData, IC="AIC")

Morgan-Tatar search since factors present with more than 2 levels.

AllSubsets

AIC
Best Model:

Df Sum Sq Mean Sq F value Pr(>F)
Maximum.lifespan 1 249.72 249.72 3852.11 <2e-16 ***
logBodyMass 1 180.81 180.81 2789.06 <2e-16 ***
M.of.Dev. 3 12.08 4.03 62.09 <2e-16 ***
Residuals 378 24.50 0.06
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



The Best model

Max. lifespan, body mass, mode of development (how developed a
chick is when it hatches: precocial is most developed)

Model has R2 of 95

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.70 0.02 37.29 0.00
Maximum.lifespan 0.08 0.02 3.98 0.00
logBodyMass 1.10 0.02 48.23 0.00
M.of.Dev.semi-altricial -0.02 0.06 -0.37 0.71
M.of.Dev.semi-precocial -0.32 0.05 -5.81 0.00
M.of.Dev.precocial -0.48 0.04 -12.20 0.00



Why we should’t just use anova() Pt 1

anova(lm(logBrainMass~Mean.latitude+logBodyMass+Maximum.lifespan+M.of.Dev,
data=BirdBrains))

Analysis of Variance Table

Response: logBrainMass
Df Sum Sq Mean Sq F value Pr(>F)

Mean.latitude 1 0.63 0.63 9.7624 0.001919 **
logBodyMass 1 429.77 429.77 6629.7470 < 2.2e-16 ***
Maximum.lifespan 1 1.67 1.67 25.7511 6.111e-07 ***
M.of.Dev 3 10.60 3.53 54.5278 < 2.2e-16 ***
Residuals 377 24.44 0.06
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mean latitude has an effect!



Why we should’t just use anova() Pt 2

anova(lm(logBrainMass~Maximum.lifespan+M.of.Dev+logBodyMass+Mean.latitude,
data=BirdBrains))

Analysis of Variance Table

Response: logBrainMass
Df Sum Sq Mean Sq F value Pr(>F)

Maximum.lifespan 1 249.724 249.724 3852.321 <2e-16 ***
M.of.Dev 3 42.085 14.028 216.406 <2e-16 ***
logBodyMass 1 150.799 150.799 2326.284 <2e-16 ***
Mean.latitude 1 0.066 0.066 1.021 0.3129
Residuals 377 24.439 0.065
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mean latitude has no effect!



Why we should’t just use anova()

Because the tests are sequential, the order usually matters

(unless the data are from a well-designed experiment)



When to Use these Methods

ANOVA: testing specific hypotheses

AIC/Full subsets: finding the best model



Bird Brains: how I would approach it

For the bird brains, the data were collected to ask if life span was
related to brain size. Other variables were included because they
might have an effect (e.g. body size)

So, we have a spcific hypothesis to test

But we want to find the other covaraites that might have an effect

So, we use AIC to find these other covariates



Bird Brains: how I would approach it

# Don't use lifespan here, but select best model with the rest
UseData <- cbind(BirdBrains[,Covars[-1]], y=BirdBrains$logBrainMass)
AllSubsets <- bestglm(Xy=UseData, IC="AIC")

Morgan-Tatar search since factors present with more than 2 levels.

# Now add max. lifespan
TestLife <- update(AllSubsets$BestModel,

.~.+Maximum.lifespan, data=BirdBrains)



The Result

anova(AllSubsets$BestModel, TestLife) # could use anova(TestLife)

Analysis of Variance Table

Model 1: y ~ Age.at.first.reprodction + logBodyMass + M.of.Dev.
Model 2: y ~ Age.at.first.reprodction + logBodyMass + M.of.Dev. + Maximum.lifespan

Res.Df RSS Df Sum of Sq F Pr(>F)
1 378 25.140
2 377 24.425 1 0.71441 11.027 0.0009857 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Yep, it still has an effect



The Model

. . . but the effect is small compared to the other effects (note:
these are standardised)

round(summary(TestLife)$coefficients,2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.70 0.02 37.21 0.00
Age.at.first.reprodction 0.02 0.02 1.11 0.27
logBodyMass 1.09 0.02 45.40 0.00
M.of.Dev.semi-altricial -0.03 0.06 -0.47 0.64
M.of.Dev.semi-precocial -0.35 0.06 -5.66 0.00
M.of.Dev.precocial -0.48 0.04 -12.04 0.00
Maximum.lifespan 0.07 0.02 3.32 0.00



Next Week

I’ll be jealous of you in Borneo

After Easter, I will wrap up where we are & how everything fits
together

The exercises don’t have to be handed in until after Easter.


