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Before we start. . .

I This week’s exercises wioll be available soon (sorry)
I I will try to get a syllabus up this week.
I Last week’s exercises don’t have to be handed in until Friday



Data Generating Models

Modern statistics deals much more with mechanisms

One major part: how the data were collected



Poisson Processes

Assume events happen at a constant rate, λ. If we observe for a
time t then the expected number of events is µ = λt. The actual
number varies around this, and follows a Poisson distribution:

Pr(N = r) = e−µµr

r !



A Poisson Distribution
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Propoerties of the Poisson

if r1 ∼ Poisson(mu1) and r2 ∼ Poisson(mu2)

I E (r1) = µ1
I Var(r1) = µ1
I r1 + r2 ∼ Poisson(µ1 + µ2)
I r1|r1 + r2 ∼ Binomial(r1 + r2, µ1/(µ1 + µ2))
I If s ∼ Binomial(N, p) with large N and small p then

s ≈ Poisson(np)

Poisson and binomial distributions are closely linked



Inference

Suppose we observe n counts from a Poisson with unknown mean µ,
what is the maximum lilelihood estimate?

Pr(N = r |µ) = e−µµr

r !
so

l(µ|r) = −µ+ rlog(µ)− log(r !)

DIffernetiate & set to 0:

0 = −1 + r 1
µ

so µ̂ = r



Is this a GLM?

Remember that a GLM has a likelihood with the form

l(θ|y) = yθ − b(θ)
a(φ) + c(y , φ)

For the Poisson we have l(µ|r) = −µ+ rlog(µ)− log(r !), so

I θ = log(µ),
I a(φ) = 1,
I and b(θ) = −eθ, c(y , φ) = −log(r !)



What This Means I

I θ = log(µ)

We have, naturally, a log link.

I this is the canonical link

Makes sense: if we are counting, the process is multiplicative
(double the effort, double the counts)

This is additive on the log scale.



What This Means II

I a(φ) = 1,

The dispersion is fixed, same as saying Var(r) = µ

The amount of variation is determined by the mean

(we will see how to relax this later)



Interpretation

The log link means that the model is multiplicative

log(µ) = α+ βx
µ = eα+βx = eαeβx

So the effect is multiplicative. For example, let x be 0 or 1, and
β = 0.01. The means are

µ0 = eα+0.010 = eα

µ1 = eα+0.011 = eα+0.01

So the ratio µ1/µ0 is eα+0.01/eα = e0.01 ≈ 1.01

If a coefficient is small, it is (approximately) the percent increase



Symmetry

The coefficients are symmetrical

e.g. if β = −0.01 then

µ1 = eα−0.011 = eαe−0.01 = eα/e0.01

I reduces the mean by e0.01 rather than increasing it by e0.01



Hypothesis Testing and Deviance

We can use AIC/BIC just like before. But ANOVA is a bit different

I AIC = Deviance + 2*Number of parameters
I lowest is best



Deviance

From before Easter:

-2 times difference in likelihood between 2 (nested) models follows a
χ2 distribution

We call −2l(θ|Y ) the deviance

So we can test whether a term shoud be in the model



Fitting a GLM in R
This is easy:

X <- 1:100
SimR <- rpois(100, lambda = exp(1.5 + 0.0001*X))
mod <- glm(SimR ~ 1, family=poisson)
mod1 <- glm(SimR ~ X, family=poisson)

# More formally
mod <- glm(SimR ~ 1, family=poisson("log"))

I we use glm not lm
I family=poisson says to use the Poisson distribution
I family=poisson("log") says to use the Poisson distribution

with a log link
I if we do not specify a link function, R will use the canonical link

I i.e. the log link for the Poisson



Analysis of Deviance

anova(mod, mod1, test="LRT")

Analysis of Deviance Table

Model 1: SimR ~ 1
Model 2: SimR ~ X

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 99 95.487
2 98 94.961 1 0.52572 0.4684



Looking at a GLM in R
summary( mod1)

Call:
glm(formula = SimR ~ X, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.9400 -0.6979 -0.1506 0.3887 2.2846

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.541490 0.094664 16.284 <2e-16 ***
X -0.001198 0.001652 -0.725 0.468
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 95.487 on 99 degrees of freedom
Residual deviance: 94.961 on 98 degrees of freedom
AIC: 422.13

Number of Fisher Scoring iterations: 4



An Example: The Hastings Rarities

British birders were worried that a lot of observations from around
Hastings betwen 1890 and 1930 were frauds

John Nelder (co-inventor of GLMs) took a look at the data, and
compared Hastings with two areas next to Hastings

https://en.wikipedia.org/wiki/Hastings_Rarities

https://en.wikipedia.org/wiki/Hastings_Rarities


Hastings Rarities Data

I Year (1895 to 1954)
I Area (Hastings, Sussex, Kent)

I Hasting is a town in Sussex: Kent is next door

I Era (A, B: A is before 1925)
I A is when the frauds were thought to occur

I Class (National rarity of species)
I Count: number of records

We will only look at the rarest species (Class I)

The problem: were there more rarities recorded around Hastings
before 1925 (in Era A)?



Hastings Data

Concerned about Hastings before abnout 1925. . . .
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Fitting & Testing the Model

Hast.mod <- glm(Count ~ Area*Era, family="poisson",
data=HastingsYearsI)

anova.hast <- anova(Hast.mod, test = "Chisq")
signif(data.frame(anova.hast), 3)

Df Deviance Resid..Df Resid..Dev Pr..Chi.
NULL NA NA 179 848 NA
Area 2 349.0 177 499 1.41e-76
Era 1 81.6 176 417 1.67e-19
Area:Era 2 55.2 174 362 1.02e-12

I The test statistic for the interaction is 55.23 with 2 DF
I If we test this against a χ2 distribution, we get p = 10ˆ{-12}.



Parameter Estimates

round(summary(Hast.mod)$coefficients, 2)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.46 0.23 -1.99 0.05
AreaHastings 1.04 0.27 3.92 0.00
AreaKent 0.31 0.30 1.04 0.30
EraA -0.24 0.35 -0.68 0.49
AreaHastings:EraA 1.74 0.38 4.62 0.00
AreaKent:EraA -0.62 0.50 -1.25 0.21

We can see that there were about exp(1.04) = 2.84 times as many
rare species around Hastings in Era B

But exp(1.74) = 5.7 times more than that before 1925



95% Confidence intervals
All parameters (on log scale):

round(CI <- confint(Hast.mod), 2)

2.5 % 97.5 %
(Intercept) -0.94 -0.04
AreaHastings 0.54 1.59
AreaKent -0.27 0.92
EraA -0.93 0.44
AreaHastings:EraA 1.01 2.49
AreaKent:EraA -1.62 0.35

For Hasting:AreaA on couint scale

round(exp(CI["AreaHastings:EraA",]),2)

2.5 % 97.5 %
2.73 12.10



The Full Summary 1

summ.Hast <- paste(capture.output(print(summary(Hast.mod), digits=2)), "\n")
cat(summ.Hast[2:7])

Call:
glm(formula = Count ~ Area * Era, family = "poisson", data = HastingsYearsI)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.02 -1.13 -0.86 0.62 5.22

The model (useful reminder) and summary of residuals (ignore!)



The Full Summary 2

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.46 0.23 -2.0 0.05 *
AreaHastings 1.04 0.27 3.9 9e-05 ***
AreaKent 0.31 0.30 1.0 0.30
EraA -0.24 0.35 -0.7 0.49
AreaHastings:EraA 1.74 0.38 4.6 4e-06 ***
AreaKent:EraA -0.62 0.50 -1.3 0.21
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Parameter estimates: very useful.

I also use coef() and confint()



The Full Summary 3

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 848.02 on 179 degrees of freedom
Residual deviance: 361.89 on 174 degrees of freedom
AIC: 639.1

Number of Fisher Scoring iterations: 5

I Dispersion was mentioned last week; more on this and use of
deviance later. . .

I AIC not useful without more models
I Ignore Fisher scorings: relate to efficiency in model fitting



Residuals
Our raw residuals are yi − E (yi), i.e. Observed - Expected
We can plot these

x <- 1:100; y <- rpois(length(x), 0.5*x)
mod <- glm(y~log(x), family="poisson")
Resid <- y - fitted(mod)
par(mfrow=c(1,2))
plot(x, y); plot(fitted(mod), Resid)
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Better Residuals

There are several solutions to this problem (none perfect)

I Pearson residuals: (x − µx )/σx
I Deviance Residuals: sgn(yi − E (yi))

√
Di

I deviance for one datum is Di = −2 ∗ l(yi |θi)
I sgn(x) is 1 if x > 0 and -1 if x < 0

Deviance residuals are the default: they control for some of the
variation in shape, but aren’t perfect



Better Residuals

par(mfrow=c(1,3))
plot(x, y); plot(fitted(mod), resid(mod, type="deviance"));
plot(fitted(mod), resid(mod, type="pearson"));
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Residuals for Discrete Data
We get lines, from when y = 0, 1, 2....
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Model Checking
Deviance Residuals can still be informative

x <- 1:100;
y <- rpois(length(x), exp(2-0.015*x + 0.0004*x^2))
mod <- glm(y~x, family="poisson")
par(mfrow=c(1,2))
plot(x, y); plot(x, resid(mod))
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Hastings Residuals
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Overdispersion

We assume that the mean controls the variance

But this is not always true: there might be extra variation

I e.g. for the Hastings data there might be more variation
between years

We can check this!



Overdispersion

If the mean controls the variance, it then controls the amount of
residual deviance

It turns out that the residual deviance should (asymptotically) follow
a χ2 distribution

I If there are lots of DF then residual deviance ≈ Deviance
I so we can test this!



Testing Overdispersion

Remember the summary?

cat(summ.Hast[20:24])

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 848.02 on 179 degrees of freedom
Residual deviance: 361.89 on 174 degrees of freedom
AIC: 639.1

We can use this to test for overdispersion



Testing Overdispersion

The residual deviance is 361.89, with 174 degrees of freedom. The
p-value is

pchisq(deviance(Hast.mod),
df=df.residual(Hast.mod),
lower.tail = FALSE)

## [1] 2.868446e-15

So it is unlikely that the data come from a Poisson distribution

I could be that there is another variable that should be in the
model

I or there is just a lot more variation



Estimating Overdispersion

The ratio of deviance degrees of freedom is 361.89/174 = 2.08

This is more useful: it acts like a residual variance.

If there is no overdispersion, this should be 1.



Dealing With Overdispersion

There are a few ways to deal with overdispersion

I Correct in the likelihood
I Use a mixed model (later?)
I Use a different distribution



Correct in the likelihood
The likelihood is

l(θ|y) = yθ − b(θ)
a(φ) + c(y , φ)

So we can estimate φ, the dispersion. We can use the deviance
ratio.
Deviance/Degrees of Freedom

Dispersion <- deviance(Hast.mod)/df.residual(Hast.mod)

We can plug that into the summary:

summary(Hast.mod, dispersion = Dispersion)

##
## Call:
## glm(formula = Count ~ Area * Era, family = "poisson", data = HastingsYearsI)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.0249 -1.1255 -0.8563 0.6215 5.2168
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4568 0.3308 -1.381 0.16736
## AreaHastings 1.0445 0.3846 2.716 0.00661 **
## AreaKent 0.3137 0.4352 0.721 0.47110
## EraA -0.2364 0.4981 -0.475 0.63507
## AreaHastings:EraA 1.7405 0.5433 3.204 0.00136 **
## AreaKent:EraA -0.6238 0.7191 -0.868 0.38567
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 2.079815)
##
## Null deviance: 848.02 on 179 degrees of freedom
## Residual deviance: 361.89 on 174 degrees of freedom
## AIC: 639.1
##
## Number of Fisher Scoring iterations: 5



Effect of Overdispersion

Effect is to increase standard errors by sqrt(Dispersion):

round(summary(Hast.mod)$coefficients[1:3,"Std. Error"],2)

## (Intercept) AreaHastings AreaKent
## 0.23 0.27 0.30

round(summary(Hast.mod, dispersion =
Dispersion)$coefficients[1:3,"Std. Error"],2)

## (Intercept) AreaHastings AreaKent
## 0.33 0.38 0.44



Effect of Overdispersion
Similar effect on anova():

cat(paste(capture.output(anova(Hast.mod, test="LRT")), "\n")[10:13])

## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 179 848.02
## Area 2 349.31 177 498.71 < 2.2e-16 ***
## Era 1 81.60 176 417.11 < 2.2e-16 ***

cat(paste(capture.output(anova(Hast.mod, dispersion = 100, test = "LRT")), "\n")[10:13])

## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 179 848.02
## Area 2 349.31 177 498.71 0.1744
## Era 1 81.60 176 417.11 0.3664



Use a different distribution

The Negative Binomial distribution assumes that there is
over-dispersion

Hast.NB <- MASS::glm.nb(Count ~ Area*Era, data=HastingsYearsI)

round(summary(Hast.NB)$coefficients, 2)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.46 0.27 -1.70 0.09
## AreaHastings 1.04 0.33 3.15 0.00
## AreaKent 0.31 0.36 0.87 0.38
## EraA -0.24 0.40 -0.59 0.55
## AreaHastings:EraA 1.74 0.47 3.72 0.00
## AreaKent:EraA -0.62 0.57 -1.09 0.27



Use a different distribution: long version

Our model is log(µi) =
∑

j Xijβj . But we could add a random term,
so it becomes log(µi) =

∑
j Xijβj + εi

If we use εi ∼ N(0, σ2) this is like a regression

I need a Generalised Linear Mixed Model to estimate it

We could also use eεi ∼ χ2
ν . This is the same as assuming a

negative binomial distribution.



Summary

I GLMs are like LMs
I anova() is (almost) the same
I summary() is the same

I but parameter interpretation is important

I Because the Poisson assumes the variance, we might have to
deal with that

I We should check for overdispersion & correct if necessary


