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Before we start. . .

Number of Exercises: ceiling(N/2)

This week's exercises don't have to be handed in until after Easter
(I will out them up tomorrow)



The Binomial Distribution

We have seen the Binomial distribution a few times, now we'll take
it seriously. ..

We have N tests, of which r are a ‘success’. Problem is to find
Pr(r|N)

» may depend on covariates



Likelihood

The probability of r is

Pr(r|N, p) = r!(,\:vlr)!pr(l —p)V

—r

So the likelihood is

I(p|N,r) = rlogp+ (N —r)log(l — p)+ log N! —log r! — log(N — r)!
= r(logp —log(1 — p)) + Nlog(1 —p) + f(N,r)

= rlog (1_pp> + Nlog(1—p) + f(N,r)

This is a GLM with a logit link function

» we will see some other link functions soon



The logit Link

p = log

The inverse is

et 1

p= 1+e“: 1+e#
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Interpreting the logit

The logit is the log-odds
Odds: p/(1-p)

Tiger Roll won the Grand National on Saturday with an odds of 10:1

» if | bet £1, | win £10
» if the odds are fair, this means that for every Grand National
won by Tiger Roll, he would lose 10.

The probability is Success/(Success + Failure), i.e.

1/(1+10) = 1/11 = 0.09



More interpretation of the Logit

if we have a basline effect a (so p = e*/(1 + e%)) and we increase
it by a small 3 (i.e. B=0+¢, so e’ ~¢) then

e th e“ef e 5 e
g = =~ er =
1+extB 14 e%ef 14 e 1+ e

p (1+5)

So a small effect (approximately) adds the effect to the probability

> especially if p is small



More interpretation of the Logit

e.g. if p=-3,

e—3
= ———— =0.047
P= 1+ ed)

Now let 5 = 0.2,

e—3+02

and 0.047 x €92 = 0.047 x 1.221 = 0.057



An example
## Loading required package: sp

The data comne from the North American Breeding Bird survey.
We have presence of the Pileated woodpecker (Dryocopus pileatus)

> a toal of 2569 routes, at each one there are 50 stops (so 50
trials)

Can we explain its distribution with rain & temperature?

Figure 1: By Joshlaymon (CC BY-SA 3.0), from Wikimedia Commons



The data

Red: recorded in 2010, grey: not recorded in 2010




Fitting the model

First, we will ignore the 50 trials, and just look at whether the
pileated woodpecker was seen at least one on each route

There are several ways to specify the response, depending on the

data

» as a factor (first level is failure, rest is success)
» as 2 columns, with successes and failures



Fitting the model: Method 1

As a logical vector

DryoPil$Present <- DryoPil$NPres>0
DryoPil$PresentF <- factor(DryoPil$Present)
DryoPil$PresentF [7:11]

[1] TRUE FALSE FALSE FALSE TRUE
Levels: FALSE TRUE

mod.methodl <- glm(PresentF ~ temp.mean.sc, data=DryoPil,
family="binomial")



Fitting the model: Method 2
As success and failure columns

DryoPil$Absent <- 1-DryoPil$Present
cbind (DryoPil$Present, DryoPil$Absent) [7:11,]

[,11 [,2]
[1,] 1 0
[2,] 0 1
(3,1 0 1
[4,] 0 1
(5,] 1 0

mod.method2 <- glm(cbind(Present, Absent) ~ temp.mean.sc,
data=DryoPil, family="binomial")



Fitting the model: Method 2

The advantage of this method is that it allows for a varying number
of trials

DryoPil$NAbs <- DryoPil$Ntrials-DryoPil$NPres
cbind (DryoPil[7:11,c("NPres", "NAbs")])

NPres NAbs
7 1 49
8 0 50
9 0 50
10 0 50
11 1 49

mod.mod.method2all <- glm(cbind(NPres, NAbs) ~ temp.mean.s
data=DryoPil, family="binomial')



Model results
Methods 1 & 2 provide identical results

> just different ways of writing the same thing

round (summary (mod .methodl) $coefficients, 3)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.587 0.042 -14.020 0
temp.mean.sc 0.357 0.042 8.506 0

round (summary (mod.method2) $coefficients, 3)

Estimate Std. Error z value Pr(>|z])
(Intercept) -0.587 0.042 -14.020 0
temp.mean.sc 0.357 0.042 8.506 0



Model Interpretation: intercept

round (summary (mod .methodl) $coefficients, 3)

Estimate Std. Error z value Pr(>lz|)
(Intercept) -0.587 0.042 -14.020 0
temp.mean.sc 0.357 0.042 8.506 0

Mean temperature is scaled, so at the mean temperature (11.3°C),
the log odds of the species being observed is -0.59. This is the same
as a probability of

670.59

T+ o059 = 036



Model Interpretation: slope

if we change the mean temperature by 1 standard deviation (5.4°C),
the probability of observed presence is

e—0.59+0.36>< 1

1+ e 059+036x1 0.44



Model Interpretation: Response

We can plot the whole curve over the range of the data:

1.0 —
(]
e
(2]
o
O 0.6 —
=
2 04
O
1]
g 0.2
o

0.0 —

Scaled Mean Temperature (° C)



Analysis of Deviance
Let's fit a bigger model

mod.big <- glm(Present ~ prec.mean.sc + temp.mean.sc + I(p:
data=DryoPil, family="binomial")
an.big <- paste(capture.output(print(anova(mod.big, test="(

cat(an.big[10:17])
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A better model

mod.better <- glm(Present ~ prec.mean.sc +
I(prec.mean.sc”2) + temp.mean.sc,
data=DryoPil, family="binomial")
round (summary (mod.better)$coefficients, 3)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.594 0.062 -9.587 0
prec.mean.sc 1.826 0.096 18.982 0
I(prec.mean.sc”2) -0.505 0.058 -8.712 0
temp.mean.sc -0.266 0.060 -4.409 0

The quadratic term for precipitation is negative, so there is a
maximum.

But the temperature effect has reversed sign
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1.0

0.8
0.6

0.4

Probability of Presence

0.2

0.0

Prediction

-2

Scaled Mean Precipitation

0

2

T
4

1.0

0.8

0.6

0.4

0.2

0.0

The maximum for precipitation is in the

not always the case!)

Scaled Mean temperature

range of the data (this is



Link Functions

Unlike the Poisson, the binomial distribution has 3 link functions
that are used:

> logit
> probit
» cloglog



logit

We've seen above that this is the natural link function

» “canonical link”



Probit: a threshold model

Imagine we have a normal distribution
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if the distribution is >0 we have a success, if it is < 0 we have a
failure

» the large the mean the greater the probability of success
> but still a random chance

This is the same as a probit link

» the inverse normal distribution



cloglog

Last week we looked at the Poisson distribution

Sometimes we have presence/absence for something that is really a
count



Dilution assays

We take a sample that might be contaminated by a microorganism

We serially dilute the sample
» concentrations x,x/2,x/4,x/8,...x/2"

Streak out onto agar plates. See if anything grows

If a sample contains the microorganism, it will grow. Assume a
Poisson distribution for the organism, then if we had a count of the
organism we would model it with a Poisson distribution and log link.
But we only have presence/absence.



c the log log

MeA
p = Pr(growth) = Pr(n > 0) = 1-Pr(n=0) = 1— IO' =1-e?
So,
p=1-— e
et =1-— p

log(A) = log(— log(1 — p))

and log(—log(1 — p)) is the cloglog link function.



The link functions

logit & probit almost the same

cloglog asymmetrical
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Symmetry
For logit & probit

Pr(success|x = 0) = 0.5
Pr(success|x — p) = Pr(failure| — (x — 1))
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Symmetry
For logit & probit

Pr(success|x = 0) = 0.5
Pr(success|x — p) = Pr(failure| — (x — 1))
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When to use the different link functions

logit
> default. Usually makes sense
probit

» sometimes with mixed models it's easier to understand.
Otherwise, use a logit

cloglog

» when you have Poisson-like counts
» not all count data!

> sometimes it is not the counting that dominates



A better model, different links
fm <- Present ~ prec.mean.sc+I(prec.mean.sc”2)+temp.mean.s
mod.logit <- glm(fm, data=DryoPil, family=binomial("logit"
round(mod.logit$coefficients, 3)

(Intercept) prec.mean.sc I(prec.mean.sc”2)
-0.594 1.826 -0.505

mod.probit <- glm(fm, data=DryoPil, family=binomial ("probi-
round (mod.probit$coefficients, 3)

(Intercept) prec.mean.sc I(prec.mean.sc”2)
-0.355 1.039 -0.256

mod.cloglog <- glm(fm, data=DryoPil, family=binomial("clog
round (mod.cloglog$coefficients, 3)

(Intercept) prec.mean.sc I(prec.mean.sc”2)
-0 KRA4AR 1 ARK -0 489



A better model, different links
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Model Checking

With binary data residuals are useless

resid(mod.better)

™
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Model Checking: grouping residuals

But we can group residuals and take the mean

# Split data into groups, and calc. mean of residuals
FitCut <- cut(fitted(mod.better), breaks=20, labels=FALSE)
ResGrp <- tapply(resid(mod.better), list(FitCut), mean)
FitGrp <- tapply(fitted(mod.better), list(FitCut), mean)
plot(FitGrp, ResGrp, xlab="Fitted (mean)", ylab="Mean resic
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Model Checking

Better when we have a larger number of trials

mod.method3 <- glm(cbind(NPres, NAbs) ~ prec.mean.sc,
data=DryoPil, family="binomial")

par (mfrow=c(1,2))

plot(fitted(mod.method3), resid(mod.method3))

plot (DryoPil$prec.mean.sc, resid(mod.method3))
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Linear model; residuals negative at both extremes for precipitation



Model Checking

Add a quadratic term. ..

form <- cbind(NPres, NAbs)~prec.mean.sc+I(prec.mean.sc”2)
mod.method3 <- glm(form, data=DryoPil, family="binomial")
par (mfrow=c(1,2))

plot(fitted(mod.method3), resid(mod.method3))
plot(DryoPil$prec.mean.sc, resid(mod.method3))

resid(mod.method3)
4
Il
resid(mod.method3)
4
|

0.00 0.01 0.02 0.03 0.04 -2 0 2 4

fitted(mod.method3) DryoPil$prec.mean.sc



Overdispersion

In the binomial, like the Poisson, the variance is controlled by the
mean.
So if we have more variation than expected, we can have

overdispesion

We can test for it in the same way.



Overdispersion

Without, then with overdispersion

N <- 100

x.all <- seq(-5,5,length=50)

pl <- exp(x.all)/(1+exp(x.all))

rl <- rbinom(length(pl), size=N, pl)

modl <- glm(cbind(rl, N-r1l) ~ x.all, family="binomial")

x2 <- rnorm(length(x.all), x.all, 1)

p2 <- exp(x2)/(1+exp(x2))

r2 <- rbinom(length(p2), size=N, p2)

mod2 <- glm(cbind(r2, N-r2) ~ x.all, family="binomial")



Overdispersion

par (mfrow=c(1,2))

plot(x.all,r1/N, main="Without overdispersion")
lines(x.all, predict(modl, type="response"))
plot(x.all,r2/N, main="With overdispersion")
lines(x.all, predict(mod2, type="response"))

Without overdispersion With overdispersion
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Overdispersion

Without Overdispersion

Deviance = 57.01322 with 48 DF.
p is 0.1748889

Deviance ratio = 1.19
With Overdispersion

Deviance = 317.3353 with 48 DF.
p is 2.278975e-41

Deviance ratio = 6.61



Sparseness

Overdisperson can't always be detected. If we only have 0 s and 1s,
then the overdispersion affects the model

x.all <- seq(-4,4,length=1e4)

pl <- exp(x.all)/(1+exp(x.all))

rl <- rbinom(length(pl), size=1, pl)

modl <- glm(rl ~ x.all, family="binomial")

x2 <- rnorm(length(x.all), x.all, 5)

p2 <- exp(x2)/(1+exp(x2))

r2 <- rbinom(length(p2), size=1, p2)

mod2 <- glm(r2 ~ x.all, family="binomial")



Plot Sparseness

par (mfrow=c(1,2))

plot(x.all,jitter(rl), cex=0.2, col="grey70")

lines(x.all, predict(modl, type='"response"), col=2, lwd=1.
plot(x.all,jitter(r2), cex=0.2, col="grey70")

lines(x.all, predict(mod2, type="response"), col=2, lwd=1.
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Can't tell if we have a poor model or overdispersion!



Next week

Summary of the course

> this will give me time to write a curriculum etc.



