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Warning

This should be the most mathematical part of the course.

The purpose is to provide some of the theory that underlies
statistical modelling



All models are wrong. . .

Statistical models assume that the data are produced by a random
process

I there is some probability of the data
I we take a sample from a population



. . . but some are useful

Our model of the data is the probability of sampling it given the
population

Different samples -> different data from the same population

We want to learn about the population from the data



The general idea

Our data is Y . We sample it randomly from a population, according
to some probability P(Y |X , θ)

I X are (fixed) covariates
I θ are parameters that describe the population

P(Y |X , θ) is a model that describes how we sample

We want an estimator of θ



An Example

What proportion of the earth is land?

If we have a globe, how can we estimate what proportion in land
and what proportion sea?

(plant cover is a real example of this problem)



Sampling The Earth

Toss the globe around When you catch it. put your finger on a
point, and say whether it lands on the land or sea Then toss it to
someone else

We will record the number of times we get Land or Sea, and use
this as an estimate of the proportion of the glode that is land



The Model

Each observation is a sample from the real world

I “Bernoulli trial”

We observe N trials, of which n are land, and (N − n) are water

n follows a binomial distribution, with an unknown p (the
population-level mean)



The Model

Pr(n = r |N, p) = N!
r !(N − r)!pr (1− p)N−r

We want an estimator of p, which is the “true” population-level
mean



Terminology

We call p the estimand: this is what we want an estimator of

We will call the estimator p̂

Because we will get p̂ by maximising the likelihood, we call it the
maximum likelihood estimator (MLE).



Likelihood

Pr(n = r |N, p) as a function of p: call it the likelihood: L(p|N, r)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

Probability

Li
ke

lih
oo

d

Find the value of p that maximises Pr(n = r |N, p)



The Philosophy

The likelihood is a data generating mechanism: it is a statistical
model

We assume that the data are random, and the parameters (and
model) are fixed

We want to find the parameters which are most likely to give rise to
the data

I we maximise the likelihood



Maximising the likelihood: two tricks

The maximum of the likelihood is at the same value of p as the
maximum of the log-likelihood

i.e. we work with log(L(p|N, r)) = l(p|N, r)

l(p|n) = log(N!)−log(r !)−log((N−r)!)+r log(p)+(N−r) log(1−p)

Becuse this is a function of p, not N or r , several terms are
constants:

l(p|n) = r log(p) + (N − r) log(1− p) + C



The log-likelihood
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Maximising the log likelihood

Differentiate with respect to p

l(p|n) = r log(p) + (N − r) log(1− p) + C

using the chain rule for the second term (u = 1− p):

d log(1− p)
dp = d log u

du
du
dp = 1

u (−1) = − 1
1− p

we get

dl(p|n)
dp = r

p −
N − r
1− p



In Figures
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Maximising

Set the gradient to 0:

0 = r
p −

N − r
1− p

So

p
1− p = r

N − r

i.e. the odds of success are equal to the ratio of successes to failure.
We can re-write this as 1−p

p = N−r
r , and re-arrange to get xtable

p̂ = r
N



So. . .

We have (analytically) maximised the likelihood to get an estimator
of p

p̂ = r
N

In more complicated problems we do the same thing, but sometimes
the maximisation is done numerically (or even through simulation)

But we always use the log-likelihood & ignore the normalising
constants



What happens if we take another sample?

??



What happens if we take another sample?

Each sample gives us a different p̂

p is fixed, and the data are random, so p̂ is a property of the data

We can sample repeatedly many times, and each time get a
different p̂

The likelihood is the distribution of p̂



Samples
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Uncertainty

Because different samples give different estimates, we want to
quantify this - suggest plausible values

What summaries could we use?



Standard Errors

Standard Deviations of Statistics: s

Binomial variance of n: Var(n|N, p) = Np(1− p)

Our statistic: n/N

Var(n/N) = 1/N2Var(n) = p(1− p)/N

Standard error:

s =
√

p(1− p)/N



Confidence Intervals

Standard errors are useful, but what values of p are likely?

Confidence intervals give the range of values in which the statistic is
likely

I usually we use 95%

A 95% confidence interval is one that has a 95% probability of
containing the estimate of p if the estimate p̂ is the true value.



Constructing a Confidence interval
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Confidence Interval for a Binomial
More difficult, because data are discrete
e.g. N = 5
N = 5, p = 0.4
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Approximations

In general, when we have a lot of data the likelihood looks like a
normal distribution

So we can use use that to make an approximation



Approximating the Likelihood

The likelihood is approximately Normal with mean equal to the
MLE, and standard deviation equal to the standard error

l(p|N, n) ∼ N(p̂,
√

p̂(1− p̂)/N)
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Approximating the Confidence Interval

We can use athis approximation, so the interval is

(
p̂ − 1.96

√
p̂(1− p̂)/N, p̂ + 1.96

√
p̂(1− p̂)/N

)
So, for N = 10, n = 4 the interval is (0.4 - 0.15, 0.4 + 0.15), i.e.
(0.25, 0.55).

With N = 100, n = 40 the interval is smaller: (0.35, 0.45).



Approximating the Confidence Interval
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How well are we doing?

The confidence interval is an interval where, if we repeat the same
experiment many thimes, we have a 95% probability of getting an
estimate inside the interval.

We can check this!



How well are we doing?
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For N = 10 we have a proportion 0.9811 within the CI,

For N = 100 the proportion is 0.9481 within the CI,



Summary

We want to estimate parameters - summaries statistics

Estiamtors are functions of the data: the estimand is fixed

Likelihood gives the probability of the data (and thus estimators)

We can summarise the uncertainty with standard errors and
confidence intervals

Our example was the binomial distribution



Next Week

Regression: fitting models with straight lines

I multiple parameters
I normal likelihood
I model fit


