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Normal Likelihood and Regression

We want to get to multiple regression, ANOVA etc. etc, but we will
build up to it

Start with estimating the parmeters of a simple normal distribution



Normal Likelihoods
Some data: egg size in 239 species of bird
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The Normal Distribution

f (x |µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2
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Our Task

Estimate the parameters of this distribution - estimate µ̂ and σ̂2

These parameters tell us about how big eggs are, and how much
variation there is - more complicated models have parameters, these
parameters should say something useful scientifically



Normal Probabilities
The normal is continuous, so Pr(X = x) = 0, and we talk about
probabilities of being between 2 values:

Pr(a < x < b|µ, σ2) = 1√
2πσ2

∫ b

a
e

1
2σ2 (x−µ)2

dx
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Why the Normal Distribution is Nice

The shape of the normal does not change with the parameters.

I Changing the mean moves the whole distribution
I Changing the variance stretches the distribution

Lots of things look normal

I Central Limit Theorem



The Normal Likelihood

For one data point the likelihood is the probability density function
(“pdf”):

p(x1|µ, σ2) = 1√
2πσ2

e−
(x1−µ)2

2σ2
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The Normal Likelihood: lots of data

With many data poits, we assume they are independent (given the
parameters). The likelihood is simply the product of each of the
likelihoods:

p(x1, x2, x3, ..., xn|µ, σ2) = p(x1)p(x2)p(x3)...p(xn) =
n∏

i=1
p(xi |µ, σ2)
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The Full Normal Likelihood

Some notation: just like we use
∑

to mean a summation, we use
∏

to mean a product (i.e. multiplying terms together)

p(x1, x2, x3, ..., xn|µ, σ2) =
n∏

i=1
p(xi |µ, σ2)

Plugging in the normal pdf we get

p(x1, x2, x3, ..., xn|µ, σ2) = 1
(2πσ2) n

2

n∏
i=1

e−
(xi −µ)2

2σ2

i.e. scary



The Normal Likelihood

We can make this simpler by looking at the log-likelihood

l(x|µ, σ2) =
n∑

i=1
l(xi |µ, σ2) = −n

2 log 2π − n
2 log σ2 −

n∑
i=1

(xi − µ)2

2σ2

and removing constants

l(x|µ, σ2) = −n
2 log σ2 −

n∑
i=1

(xi − µ)2

2σ2

So this is just quadratic in xi



Maximising the likelihood

We want estimates of µ and σ2, so we need to find values of µ and
σ2 which give the maximum of the likelihood

(Quick Break??)



Maximising the likelihood

There are two parameters: µ and σ2

We can find the MLE of {µ, σ2} by looking at these separately,
i.e. solve ∂l(x|µ,σ2)

∂µ and ∂l(x|µ,σ2)
∂σ2

This is mathematically more involved. We do it by finding µ̂, the
the LME for µ:

l(x|µ, σ2) = −n
2 log σ2 − 1

2σ2

n∑
i=1

(x2
i − 2xiµ+ µ2)

= −n
2 log σ2 − 1

2σ2

( n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2
)

Differnetiate w.r.t (w.r.t = “with respect to”) µ, set to zero,
re-arrange, and pray



The Solutions

The MLE for the mean is

µ̂ =
∑n

i=1 xi
n

For the variance, differentiate w.r.t σ2, set to zero, re-arrange, pray
some more, and get

σ̂2 = 1
n

n∑
i=1

(xi − µ̂)2

For details, do it yourself or see
https://www.statlect.com/fundamentals-of-statistics/
normal-distribution-maximum-likelihood

https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood
https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood


Comments

The estimate µ̂ is just the sample mean, and σ̂2 is just the sample
variance

I the whole distribution can be summarised by these two
statistics

σ̂2 has n as a denominator, not n − 1

I because we assume the MLE for µ̂: using (n-1) is better
because it takes into account the uncertainty



What it looks like
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Joint Likelihood
The likelihoods for µ̂ and σ̂2 are independent
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Uncertainty

Different realisations of the data give different results
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We can summarise this with standard errors and confidence intervals



Back to maths

The first differential of the log-likelihood w.r.t. µ is

δl
δµ

= − 1
σ2

( n∑
i=1

xi − nµ
)

If we differentiate again w.r.t µ̂ we get

δ2l
δµ2 = − n

σ2

The second differential is the curvature of the likelihood, and is the
negative inverse of the standard error

This turns out to be a general assypmtotic approximation

I i.e. usually a good approximation, with enough data



Curves in Plots
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Confidence Intervals for µ̂

µ̂ has a Normal likelihood with standard error σ̂2/
√

n

I proof not shown!

So we can use a Normal distribution to create the (asymptotic) ML
confidence intervals

95% Confidence interval = (µ̂− 1.96
√
σ̂2/n, µ̂+ 1.96

√
σ̂2/n)



Confidence Intervals for σ̂2

The (asymptotic) standard error for σ̂2 is
√
2/nσ̂2, so the

confidence interval is approximately

(σ̂2 − 1.96

√
2
n σ̂

2, σ̂2 + 1.96

√
2
n σ̂

2)



Why asymptotic?

The standard error is calculated at the MLEs of the other parameters

So any uncertainty in σ̂2 is ignored

This is also why the confidence interval is normally distributed, not
a t-distribution

When N is large, it is OK

For σ2, the likelihood is not symmetric, but at reasonable sample
sizes this does not matter



Coverage

The coverage is the proportion of times the confidence interval
contains the true value. For a 95% confidence interval, this should
be 95%.
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Does the model fit?

How could the model be wrong?

The assumptions:

I data follow a normal distribution
I data have a constant mean and variance
I data are independent



Does the model fit?
This is a simple model, but it could still fit badly. For example, this
data does not look like a normal distribution
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Checking Normality

We should check if our model is good, i.e. are the assumptions OK?

If not, we might have to change the model



Checking Normality

For our bird egg data, the main question is whether the data are
normally distributed

Later we will ask if we can improve the model by trying to explain
the variation



Some Examples

Some examples of good/bad fit
Normal: Good!
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Quantile Plots

If we sample n points from some distribution, we can work out what
the expected values are. One way to do this is to split the
distribution up into equal slices, and put the expected data where
the slices are

I one point: the expected point is the mean (or median!)
I two points: 33% & 67% quantiles
I three points: 25%, 50% (median) & 75% quantiles
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Normal Probability Plots

With lots of points, the quantiles should be about the same as the
(ordered) points

So, we can line them up

If we plot them against each other they should lie on the 1:1 line



Normal probability Plots

The normal distribution is nice because it has the same shape: we
can move the x-axis or stretch it, but the shape is the same.

So we can plot the ordered data against the expected quantiles of a
N(0,1) distribution with the same number of points



Normal probability Plots

Good!
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Normal probability Plots
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What we have Covered

The normal likelihood

I used a lot

Maximum likelihood with > 1 parameter

I maximumse w.r.t. each parameter

Standard errors and asymptotic confidence intervals

Model Checking

I does the model fit the data?



Next Week

Regression

Allowing µ to change

More modelling, less inference


