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Regression

Now we will get to modelling



Two Reasons for Models

Inference

I Does giving a hurricane a male name increase the amount of
damage it does?

I How much difference is there between hurricanes with male or
female names?

Prediction

I if we call the next hurricane Donald, how much damage will it
do?



The Model Idea

We have a variable, Y , which we want to explain with a covariate, X

e.g. we want to explain egg size in species of bird by body size

Here we will use a straight line

I more complex models come later: they are sums of straight
lines



Some Data
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What is the best line?
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What is the best line?
One of these?
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## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
##
## [[9]]
## NULL
##
## [[10]]
## NULL



Excercise: What should a straight line be?

For each plot, draw what you think is the best line
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Defining a best line

We want to fit a straight line:

yi = α + βxi

But there is error that the line cannot explain, so we change the
model to

yi = α + βxi + εi

with
∑
εi = 0



Maximum Likelihood

We can assume that the errors are normally distributed:

εi ∼ N(0, σ2)

The log-likelihood is

l(y|x, α, β, σ2) = −n
2 log σ2 −

n∑
i=1

(yi − α− βxi )2

2σ2



Maximum Likelihood

We can assume that the errors are normally distributed:

εi ∼ N(0, σ2)

The log-likelihood is

l(y|x, α, β, σ2) = −n
2 log σ2 −

n∑
i=1

(yi − α− βxi )2

2σ2

This is quadratic in yi , so this is the same minimising the sums of
squares, i.e. the least squares estimate



Drawing a best line

yi = α + βxi + εi
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Drawing a best line

yi = α + βxi + εi
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(xi, α+βxi+εi)



Drawing a best line

yi = α + βxi + εi
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Drawing a best line

yi = α + βxi + εi
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(yi − α−βxi)



Drawing a best line
We minimise the squares of these distances
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MLEs

We could go through the maths, but

α̂ = ȳ − β̂x̄

β̂ =
∑N

i=1(xi − x̄)(yi − ȳ)∑N
i=1 (xi − x̄)2

σ̂2 = 1
N

N∑
i=1

(
yi − α̂− β̂xi

)2



What these Mean: The Intercept

The line goes through (x̂ , ŷ), and is extrapolated backwards to
x = 0

α̂ = ȳ − β̂x̄
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What these Mean: The slope

β̂ =
∑N

i=1(xi − x̄)(yi − ȳ)∑N
i=1 (xi − x̄)2

This is Cov(x , y)/Var(x)



What these Mean: the variance

σ̂2 = 1
N

N∑
i=1

(
yi − α̂− β̂xi

)2

Set µ̂i = α̂ + β̂xi and we get

σ̂2 = 1
N

N∑
i=1

(yi − µ̂i )2

So, the same as the ML estimate of the variance, once we have
corrected the values to their means



The Example

For this data we have

yi = -1.25 + 0.76 xi + εi

εi ∼ N (0, 0.46 2)
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Interpreting The Example

For this data we have

yi = -1.25 + 0.76 xi + εi

εi ∼ N (0, 0.46 2)

If log Body Mass increases by 1

I body mass increases by e1 = 2.72 times
I egg mass increases by 0.76 (i.e. 2.14 times)

so this is a bit less than proportional: it is about 3/4



Mis-Interpreting The Example

yi = -1.25 + 0.76 xi + εi

εi ∼ N (0, 0.46 2)

A mass-less bird would have an egg of negative mass

I why does the model still make sense?



How good is the model?

I how good (i.e. precise) are the estimates?
I how well does it explain the data?



How precise are the estimates?
The likelihood for α and β is correlated
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Why is there a correlation?

The line has to go through (x̄ , ȳ), so if we increase the intercept, we
have to decrease the slope
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Standard Errors

The standard errors are not trivial to obtain, especially as they are
correlated. We are primarily interested in the standard errors for α
and β

Var
(
α
β

)
= σ̂2∑

(xi − x̄)2

( ∑
x2

i −
∑

xi
−
∑

xi n

)

Note that the covariance is 0 when
∑

xi = 0



Confidence Intervals

From the standard errors we can calculate the asymptotic
confidence intervals for the parameters, e.g.

(α̂− 1.96sα, α̂ + 1.96sα)

where sα is the standard error for α (in practice, get this from the
computer)

e.g the 95% confidence interval for the slope is (0.73, 0.79), i.e. we
can be sure it is < 1, and is fairly close to 3/4

(with less data, a t-distirbution makes more sense)



Prediction
Our Eclectus, Freyja and Eric, are thinking of breeding (at least
Freyja is). How large will their egg be?

Figure 1:



Prediction

Female Eclectus’ body size: 390g - 445g (so median of 417.5g)

Point estimate:

E (y) = −1.25 + 0.76× log(417.5) = 3.34

So, a mass of exp(3.34) = 28.2g

But this is uncertain. . .

(remember, we have log-log transformed the data)



Prediction Intervals

Just as we have confidence intervals, we can also have prediction
intervals

We assume our data is normally distributed (given its mean), so if
we knew the prameters it would be

ypred ∼ N(α + βxpred , σ
2)

e.g. the 95% confidence interval would be
e(3.34−1.96×0.46,3.34+1.96×0.46) = (11.5, 68.8)



Full Prediction Intervals

We also take into account the uncertainty in the data (and thus
parameter estimates), so the standard deviation of the prediction
becomes

σpred =
√
1 + 1

n + (xpred − x̄)2∑
(xi − x̄)2

We also have to assume a t-ditribution (with n-1 degrees of
freedom), to account for the uncertainty in σ̂2

ypred ∼ t(α + βxpred , σ
2, n − 1)



Full Prediction Intervals
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Next. . .

Friday: Exercises (at last!)

https://www.math.ntnu.no/emner/TMA4268/2018v/1Intro/
Rbeginner.html

for masochists: https://www.math.ntnu.no/emner/TMA4268/
2018v/1Intro/Rintermediate.html

Next Week: How well does the model actually fit the data?

I Grafen & Hails Chapter 2.4 - 2.7

https://www.math.ntnu.no/emner/TMA4268/2018v/1Intro/Rbeginner.html
https://www.math.ntnu.no/emner/TMA4268/2018v/1Intro/Rbeginner.html
https://www.math.ntnu.no/emner/TMA4268/2018v/1Intro/Rintermediate.html
https://www.math.ntnu.no/emner/TMA4268/2018v/1Intro/Rintermediate.html

