Lecture 6: More Regression

Bob O'Hara

bob.ohara@ntnu.no

Read in the data (and sub-sample)

Plot the data

The Model

The model is a straight line: we are regressing y against x

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

where x_i is the log body mass, and y_i is the log egg mass, and

$$\varepsilon_i \sim N(0, \sigma^2)$$

The code to fit the model is simple:

mod <- lm(logEggMass ~ logFemaleMass, data=BirdEggs)</pre>

- logEggMass ~ logFemaleMass is the formula that describes the model: Y~X means we regress Y against X
- data=BirdEggs just gives the data frame where the data are

The Parameter Estimates

```
round(coef(mod), 2)
```

(Intercept) logFemaleMass
-0.74 0.69

round(sigma(mod), 2)

[1] 0.51

So the model is

$$y_i = -0.74 + 0.69x_i + \varepsilon_i$$
$$\varepsilon_i \sim N(0, 0.51^2)$$

Plotting the Model

Uncertainty in the parameters

round(confint(mod), 2)

##		2.5 %	97.5 %
##	(Intercept)	-1.59	0.10
##	logFemaleMass	0.56	0.83

Looking at uncertainty in the intercept

If we fix the slope, then we can look at variation in the intercept. These are the upper & lower 95% confidence limits

Looking at uncertainty in the intercept

If we fix the slope, then we can look at variation in the intercept. These are the upper & lower 95% confidence limits

Uncertainty in the slope

If we fix the intercept, then we can look at variation in the slope. These are the uppr & lower 95% confidence limits

Uncertainty in the slope

If we fix the intercept, then we can look at variation in the slope. These are the uppr & lower 95% confidence limits

Log body mass

Uncertainty

In reality both slope & intercept are uncertain

Summaries

summary(mod)

Call: lm(formula = logEggMass ~ logFemaleMass, data = BirdEggs) Residuals: Min 1Q Median 3Q Max -1.28823 -0.23295 0.01199 0.35099 0.87011 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.74429 0.40126 -1.855 0.0801. logFemaleMass 0.69495 0.06211 11.190 1.54e-09 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

Residual standard error: 0.5142 on 18 degrees of freedom

Summaries: Coefficients

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -0.744 0.401 -1.9 0.08. logFemaleMass 0.695 0.062 11.2 2e-09 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Summaries: Last stuff

Residual standard error: 0.51 on 18 degrees of freedom Multiple R-squared: 0.87, Adjusted R-squared: 0.87 F-statistic: 1.3e+02 on 1 and 18 DF, p-value: 1.5e-09

Summaries: Last stuff

Residual standard error: 0.51 on 18 degrees of freedom

- Estimate of σ
- Degrees of freedom: how many "spare" data points we have

Multiple R-squared: 0.87, Adjusted R-squared: 0.87

- ▶ Multiple R-squared: *R*² (see last lecture). What proportion of the variation are we explaining?
- Adjusted R-squared: ignore (at least for now)

```
F-statistic: 1.3e+02 on 1 and 18 DF, p-value: 1.5e-09
```

Test of if the data explains anything. Usually very silly to test this.

Pause

Model Checking

Lots more plots!

Building a Plot

plot(fitted(mod), resid(mod))

(for your own plots, do what you feel comfortable with)

Add axis labels

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
 ylab="Residual")

Change the plot colour

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
 ylab="Residual", col="red")

(col= is documented in ?par, as are a lot of other options)

Quantile Plots

Special function!

(mar= sets margin sizes)

Quantile Plots

Special function!

(main = gives title)

Now Into More Dimensions

We have learned how to draw straight lines

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

But this is limited as a model: we cannot draw more complicated curves, and we cannot explain or predict the effects of more than one covariate.

The Model

This is out basic model

$$y_i = \alpha + \sum_{j=1}^{p} \beta_j x_{ij} + \varepsilon_i$$

$$y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \dots + \beta_p x_{ip} + \varepsilon_i$$

So we replace βx_j with $\sum_{j=1}^{p} \beta_j x_{ij}$.

- we have p covariates, labelled from j = 1 to p
- we have p covariate effects
- the jth covariate values for the ith individual is x_{ii}

Design Matrices

We can write this more compactly. First, we turn the intercept into a covariate by using a covariate with a value of 1 for every data point. Then we write all of the covariates in a matrix, X:

$$X = \begin{pmatrix} 1 & 2.3 & 3.0 \\ 1 & 4.9 & -5.3 \\ 1 & 1.6 & -0.7 \\ \vdots & \vdots & \vdots \\ 1 & 8.4 & 1.2 \end{pmatrix}$$

So, the first column is the intercept, the second is the first covariate, and the third is the second covariate.

This is called the *Design Matrix*: it is helpful for writing down the model

Using marix algebra, the regression model becomes

$$\mathbf{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where **Y**, β and ε are now all vectors of length *n*, where there are *n* data points. *X* is am *n* × *p* matrix.

We will not look at the mathematics in any detail: the point here is that the model for the effect of covariates can be written in the design matrix.

Writing the Model

$$\mathbf{Y} = X\beta + \varepsilon$$

is

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 2.3 & 3.0 \\ 1 & 4.9 & -5.3 \\ 1 & 1.6 & -0.7 \\ \vdots & \vdots & \vdots \\ 1 & 8.4 & 1.2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_n \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

The Solution (just so you can see it)

After a bit of matric algebra, one can find the ML solution:

$$\mathbf{b} = (X^T X)^{-1} X^T \mathbf{Y}$$

where **b** is the MLE for β .

In practice, (a) you won't have to calculate this: the computer does it, and (b) the computer actually doesn't use this

An Example: Bird Brains

The data wehave been using was collected to look at the effects of longevity on brain size.

But size is a counfounder, i.e. it also has an effect

We wil ltry to explain (log) brain mass with:

- Maximum lifespan
- Age at first reprodction
- IogBodyMass

We can write the model as

 $\label{eq:logBrainMass} \ensuremath{\sim}\xspace Maximum \ lifespan \ + \ Age \ at \ first \ reproduction \ + \ logBodyMass$

Fitting the Model

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	-2.025	0.042	-47.942	0
##	Maximum.lifespan	0.009	0.002	4.368	0
##	logBodyMass	0.525	0.012	43.395	0

The Model

The model is

$$y_i = -2.02 + 0.01x_{i1} + 0.01x_{i2} + \varepsilon_i$$

Where the X's are maximum lifespan and logBodyMass

The Model

log Brain Mass

With one covariate we have a straight line, with two we have a plane.

log Body Mass

The parameters say what happens if we increase a parameter by 1 if we hold the other covariates constant

e.g. if we increase maximum lifespan by 1 year, log brain mass increases by 0.009.

But this is scale dependent: if we measure lifespan in decades, the coefficient changes to $0.091\,$

Makes it difficult to compare between different covariates: how do we compare 1 year to 1 kg?

Standardised Coefficients

We can look at the standardised coefficients

- standardise by the standard deviation
- also mean-centre

Fit the Standardised Model

```
BirdBrains$Max.lifespan.std <-
    scale(BirdBrains$Maximum.lifespan)
BirdBrains$logBodyMass.std <-
    scale(BirdBrains$logBodyMass)
Mod.std <- lm(logBrainMass ~ logBodyMass.std +
        Max.lifespan.std, data=BirdBrains)
round(summary(Mod.std)$coefficients, 3)</pre>
```

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	0.571	0.016	36.134	0
##	logBodyMass.std	0.987	0.023	43.395	0
##	Max.lifespan.std	0.099	0.023	4.368	0

Interpret the Standardised Model

round(summary(Mod.std)\$coefficients, 3)

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	0.571	0.016	36.134	0
##	logBodyMass.std	0.987	0.023	43.395	0
##	Max.lifespan.std	0.099	0.023	4.368	0

- The intercept is now at the mean of Max. lifespan & log Body Mass
- the estimates are the effects of changing covriates by 1 standard deviation.
 - comparable as relative changes in the data
 - effect of log body mass about 10 times bigger than lifespan

Plot the Standardised Model

Maximum lifespan

log Body Mass

Another use of multiple regression

Approximating curves

We can approximate curves with a Taylor series:

$$f(x) \approx \beta_0 + \beta_1 (x-\bar{x}) + \beta_2 (x-\bar{x})^2 + \beta_3 (x-\bar{x})^3 + \dots + \beta_p (x-\bar{x})^p$$

So we can fit an approximate curve by regressing Y against X, X^2 , x^3 etc.

Bird Eggs

For the bird eggs data, there might be a curve, so we can fit that

round(summary(Mod.quad)\$coefficients, 2)

##		Estimate	Std.	Error	t	value	Pr(> t)
##	(Intercept)	3.32		0.04		89.78	0
##	lgFM.std	1.37		0.03		47.16	0
##	I(lgFM.std^2)	-0.08		0.02		-3.28	0

Plot Bird Eggs

log Female Mass

We can fit models with more than 1 covariate

- comparison of the coefficients is a bit tricky
- with more than 2 covariates, plotting the model is a pain

We can use this to fit more complicated curves

Next Week

How well does the model fit?

Do we need all of these parameters?