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Regression & R

Read in the data (and sub-sample)

BirdEggs <- read.csv(file="../Data/BirdEggs.csv",
stringsAsFactors = FALSE)

# sub-sample 30 observations, just to make things clearer later
BirdEggs <- BirdEggs[sample.int(nrow(BirdEggs), size=20),]



Plot the data

par(mar=c(4.1,4.1,1,1))
plot(BirdEggs$logFemaleMass, BirdEggs$logEggMass,

xlab="Log body mass", ylab="Log egg mass",
main="", lwd=2, col="black", pch=4)
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The Model

The model is a straight line: we are regressing y against x



yi = α + βxi + εi

where xi is the log body mass, and yi is the log egg mass, and

εi ∼ N(0, σ2)



Fitting the Model in R

The code to fit the model is simple:

mod <- lm(logEggMass ~ logFemaleMass, data=BirdEggs)

I logEggMass ~ logFemaleMass is the formula that describes the
model: Y~X means we regress Y against X

I data=BirdEggs just gives the data frame where the data are



The Parameter Estimates

round(coef(mod), 2)

## (Intercept) logFemaleMass
## -0.74 0.69

round(sigma(mod), 2)

## [1] 0.51

So the model is

yi = −0.74 + 0.69xi + εi

εi ∼ N(0, 0.512)



Plotting the Model

par(mar=c(4.1,4.1,1,1))
plot(BirdEggs$logFemaleMass, BirdEggs$logEggMass,

xlab="Log body mass", ylab="Log egg mass",
main="", lwd=2, col="black", pch=4)

abline(mod, col="blue", lwd=3)
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Uncertainty in the parameters

round(confint(mod), 2)

## 2.5 % 97.5 %
## (Intercept) -1.59 0.10
## logFemaleMass 0.56 0.83



Looking at uncertainty in the intercept
If we fix the slope, then we can look at variation in the intercept.
These are the upper & lower 95% confidence limits
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Looking at uncertainty in the intercept
If we fix the slope, then we can look at variation in the intercept.
These are the upper & lower 95% confidence limits
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Uncertainty in the slope
If we fix the intercept, then we can look at variation in the slope.
These are the uppr & lower 95% confidence limits
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Uncertainty in the slope
If we fix the intercept, then we can look at variation in the slope.
These are the uppr & lower 95% confidence limits
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Uncertainty
In reality both slope & intercept are uncertain
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Summaries
summary(mod)

Call:
lm(formula = logEggMass ~ logFemaleMass, data = BirdEggs)

Residuals:
Min 1Q Median 3Q Max

-1.28823 -0.23295 0.01199 0.35099 0.87011

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.74429 0.40126 -1.855 0.0801 .
logFemaleMass 0.69495 0.06211 11.190 1.54e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5142 on 18 degrees of freedom
Multiple R-squared: 0.8743, Adjusted R-squared: 0.8673
F-statistic: 125.2 on 1 and 18 DF, p-value: 1.542e-09



Summaries: Coefficients

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.744 0.401 -1.9 0.08 .
logFemaleMass 0.695 0.062 11.2 2e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Summaries: Last stuff

Residual standard error: 0.51 on 18 degrees of freedom
Multiple R-squared: 0.87, Adjusted R-squared: 0.87
F-statistic: 1.3e+02 on 1 and 18 DF, p-value: 1.5e-09



Summaries: Last stuff

Residual standard error: 0.51 on 18 degrees of freedom

I Estimate of σ
I Degrees of freedom: how many “spare” data points we have

Multiple R-squared: 0.87, Adjusted R-squared: 0.87

I Multiple R-squared: R2 (see last lecture). What proportion of the variation
are we explaining?

I Adjusted R-squared: ignore (at least for now)

F-statistic: 1.3e+02 on 1 and 18 DF, p-value: 1.5e-09

I Test of if the data explains anything. Usually very silly to test this.



Pause



Model Checking

Lots more plots!



Building a Plot

plot(fitted(mod), resid(mod))
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(for your own plots, do what you feel comfortable with)



Add axis labels

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
ylab="Residual")
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Change the plot colour
plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",

ylab="Residual", col="red")
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(col= is documented in ?par, as are a lot of other options)



Quantile Plots
Special function!
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(mar= sets margin sizes)



Quantile Plots
Special function!
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Now Into More Dimensions



Multiple Regression

We have learned how to draw straight lines

yi = α + βxi + εi

But this is limited as a model: we cannot draw more complicated
curves, and we cannot explain or predict the effects of more than
one covariate.



The Model

This is out basic model

yi = α +
p∑

j=1
βjxij + εi

yi = α + β1xi1 + β2xi2 + β3xi3 + · · · + βpxip + εi

So we replace βxj with
∑p

j=1 βjxij .

I we have p covariates, labelled from j = 1 to p
I we have p covariate effects
I the jth covariate values for the ith individual is xij



Design Matrices

We can write this more compactly. First, we turn the intercept into
a covariate by using a covariate with a value of 1 for every data
point. Then we write all of the covariates in a matrix, X :

X =


1 2.3 3.0
1 4.9 −5.3
1 1.6 −0.7
...

...
...

1 8.4 1.2


So, the first column is the intercept, the second is the first covariate,
and the third is the second covariate.

This is called the Design Matrix: it is helpful for writing down the
model



Writing the Model

Using marix algebra, the regression model becomes

Y = Xβ + ε

where Y, β and ε are now all vectors of length n, where there are n
data points. X is am n × p matrix.

We will not look at the mathematics in any detail: the point here is
that the model for the effect of covariates can be written in the
design matrix.



Writing the Model

Y = Xβ + ε

is


y1
y2
y3
...

yn

 =


1 2.3 3.0
1 4.9 −5.3
1 1.6 −0.7
...

...
...

1 8.4 1.2




β1
β2
β3
...
βn

 +


ε1
ε2
ε3
...
εn





The Solution (just so you can see it)

After a bit of matric algebra, one can find the ML solution:

b = (XT X )−1XT Y

where b is the MLE for β.

In practice, (a) you won’t have to calculate this: the computer does
it, and (b) the computer actually doesn’t use this



An Example: Bird Brains

The data wehave been using was collected to look at the effects of
longevity on brain size.

But size is a counfounder, i.e. it also has an effect
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Fitting the Model

We wil ltry to explain (log) brain mass with:

I Maximum lifespan
I Age at first reprodction
I logBodyMass

We can write the model as

logBrainMass ~ Maximum lifespan + Age at first reprodction +
logBodyMass



Fitting the Model

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.025 0.042 -47.942 0
## Maximum.lifespan 0.009 0.002 4.368 0
## logBodyMass 0.525 0.012 43.395 0



The Model

The model is

yi = −2.02 + 0.01xi1 + 0.01xi2 + εi

Where the X’s are maximum lifespan and logBodyMass



The Model
With one covariate we have a straight line, with two we have a plane.
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Model Interpretation

The parameters say what happens if we increase a parameter by 1 if
we hold the other covariates constant

e.g. if we increase maximum lifespan by 1 year, log brain mass
increases by 0.009.

But this is scale dependent: if we measure lifespan in decades, the
coefficient changes to 0.091

Makes it difficult to compare between different covariates: how do
we compare 1 year to 1kg?



Standardised Coefficients

We can look at the standardised coefficients

I standardise by the standard deviation
I also mean-centre



Fit the Standardised Model

BirdBrains$Max.lifespan.std <-
scale(BirdBrains$Maximum.lifespan)

BirdBrains$logBodyMass.std <-
scale(BirdBrains$logBodyMass)

Mod.std <- lm(logBrainMass ~ logBodyMass.std +
Max.lifespan.std, data=BirdBrains)

round(summary(Mod.std)$coefficients, 3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.571 0.016 36.134 0
## logBodyMass.std 0.987 0.023 43.395 0
## Max.lifespan.std 0.099 0.023 4.368 0



Interpret the Standardised Model

round(summary(Mod.std)$coefficients, 3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.571 0.016 36.134 0
## logBodyMass.std 0.987 0.023 43.395 0
## Max.lifespan.std 0.099 0.023 4.368 0

I The intercept is now at the mean of Max. lifespan & log Body
Mass

I the estimates are the effects of changing covriates by 1
standard deviation.

I comparable as relative changes in the data
I effect of log body mass about 10 times bigger than lifespan



Plot the Standardised Model
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Another use of multiple regression

Approximating curves

We can approximate curves with a Taylor series:

f (x) ≈ β0 +β1(x − x̄) +β2(x − x̄)2 +β3(x − x̄)3 + · · · +βp(x − x̄)p

So we can fit an approximate curve by regressing Y against X , X 2,
x3 etc.



Bird Eggs

For the bird eggs data, there might be a curve, so we can fit that

BirdEggs <- read.csv(file="../Data/BirdEggs.csv",
stringsAsFactors = FALSE)

BirdEggs$lgFM.std <- scale(BirdEggs$logFemaleMass)
Mod.quad <- lm(logEggMass ~ lgFM.std + I(lgFM.std^2),

data=BirdEggs)
round(summary(Mod.quad)$coefficients, 2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.32 0.04 89.78 0
## lgFM.std 1.37 0.03 47.16 0
## I(lgFM.std^2) -0.08 0.02 -3.28 0



Plot Bird Eggs
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Summary

We can fit models with more than 1 covariate

I comparison of the coefficients is a bit tricky
I with more than 2 covariates, plotting the model is a pain

We can use this to fit more complicated curves



Next Week

How well does the model fit?

Do we need all of these parameters?


