Lecture 7: Multiple Regression

Bob O'Hara

bob.ohara@ntnu.no

Before we start...

Exercises to be handed in by 17:00

if we get a folder set up

We have learned how to draw straight lines

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

But this is limited as a model: we cannot draw more complicated curves, and we cannot explain or predict the effects of more than one covariate.

An Example: Bird Brains

The data wehave been using was collected to look at the effects of longevity on brain size.

but size is a counfounder, i.e. it also has an effect, so it had to be included

Another Example: Health care

The health care data isn't linear. We can try transforming, or we can fit a polynomial (i.e. include x^2 , x^3 etc. terms)

The Model

This is out basic model

$$y_i = \alpha + \sum_{j=1}^{p} \beta_j x_{ij} + \varepsilon_i$$

$$y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \dots + \beta_p x_{ip} + \varepsilon_i$$

So we replace βx_j with $\sum_{j=1}^{p} \beta_j x_{ij}$.

- we have p covariates, labelled from j = 1 to p
- we have p covariate effects
- the jth covariate values for the ith individual is x_{ii}

Design Matrices

We can write this more compactly. First, we turn the intercept into a covariate by using a covariate with a value of 1 for every data point. Then we write all of the covariates in a matrix, X:

$$X = \begin{pmatrix} 1 & 2.3 & 3.0 \\ 1 & 4.9 & -5.3 \\ 1 & 1.6 & -0.7 \\ \vdots & \vdots & \vdots \\ 1 & 8.4 & 1.2 \end{pmatrix}$$

So, the first column is the intercept, the second is the first covariate, and the third is the second covariate.

This is called the *Design Matrix*: it is helpful for writing down the model

Using marix algebra, the regression model becomes

$$\mathbf{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where **Y**, β and ε are now all vectors of length *n*, where there are *n* data points. *X* is am *n* × *p* matrix.

We will not look at the mathematics in any detail: the point here is that the model for the effect of covariates can be written in the design matrix.

Writing the Model

$$\mathbf{Y} = X\beta + \varepsilon$$

is

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 2.3 & 3.0 \\ 1 & 4.9 & -5.3 \\ 1 & 1.6 & -0.7 \\ \vdots & \vdots & \vdots \\ 1 & 8.4 & 1.2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

• β_0 is the intercept

The Solution (just so you can see it)

After a bit of matric algebra, one can find the ML solution:

$$\mathbf{b} = (X^T X)^{-1} X^T \mathbf{Y}$$

where **b** is the MLE for β .

In practice:

- > you won't have to calculate this: the computer does it, and
- the computer actually doesn't use this

We will try to explain (log) brain mass with:

- Maximum lifespan
- IogBodyMass

We can write the model as

 ${\sf logBrainMass} \sim {\sf Maximum\ lifespan\ } + {\sf logBodyMass}$

Fitting the Model

Parameter Estimates

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	-2.025	0.042	-47.942	0
##	Maximum.lifespan	0.009	0.002	4.368	0
##	logBodyMass	0.525	0.012	43.395	0

The Model

The model is

$$y_i = -2.02 + 0.01x_{i1} + 0.53x_{i2} + \varepsilon_i$$

Where the X's are maximum lifespan and logBodyMass

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	-2.025	0.042	-47.942	0
##	Maximum.lifespan	0.009	0.002	4.368	0
##	logBodyMass	0.525	0.012	43.395	0

The Model

log Brain Mass

With one covariate we have a straight line, with two we have a plane.

log Body Mass

The parameters say what happens if we increase a parameter by 1 if we hold the other covariates constant

e.g. if we increase maximum lifespan by 1 year, log brain mass increases by 0.009.

But this is scale dependent: if we measure lifespan in decades, the coefficient changes to $0.091\,$

Makes it difficult to compare between different covariates: how do we compare 1 year to 1 kg?

Standardised Coefficients

We can look at the standardised coefficients

- standardise by the standard deviation
- also mean-centre

BirdBrains\$Max.lifespan.std < scale(BirdBrains\$Maximum.lifespan)
BirdBrains\$logBodyMass.std < scale(BirdBrains\$logBodyMass)</pre>

Fit the Standardised Model

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	0.571	0.016	36.134	0
##	logBodyMass.std	0.987	0.023	43.395	0
##	Max.lifespan.std	0.099	0.023	4.368	0

Interpret the Standardised Model

round(summary(Mod.std)\$coefficients, 3)

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	0.571	0.016	36.134	0
##	logBodyMass.std	0.987	0.023	43.395	0
##	Max.lifespan.std	0.099	0.023	4.368	0

- The intercept is now at the mean of Max. lifespan & log Body Mass
- the estimates are the effects of changing covariates by 1 standard deviation.
 - comparable as relative changes in the data
 - effect of log body mass about 10 times bigger than lifespan

Plot the Standardised Model

Maximum lifespan

log Body Mass

Another use of multiple regression

Approximating curves

We can approximate curves with a Taylor series:

$$f(x) \approx \beta_0 + \beta_1 (x-\bar{x}) + \beta_2 (x-\bar{x})^2 + \beta_3 (x-\bar{x})^3 + \dots + \beta_p (x-\bar{x})^p$$

So we can fit an approximate curve by regressing Y against X, X^2 , x^3 etc.

Bird Eggs

For the bird eggs data, there might be a curve, so we can fit that

The model formula is

```
logEggMass \sim lgFM.std + l(lgFM.std^2)
```

We need the I() to tell R to use the quadratic

Bird Eggs Summary

round(summary(Mod.quad)\$coefficients, 2)

##		Estimate	Std.	Error	t	value	Pr(> t)
##	(Intercept)	3.32		0.04		89.78	0
##	lgFM.std	1.37		0.03		47.16	0
##	I(lgFM.std^2)	-0.08		0.02		-3.28	0

We still see a positive linear term, but the quadratic is negative

so, what does the curve look like?

Plot Bird Eggs

log Female Mass

We can fit models with more than 1 covariate

- comparison of the coefficients is a bit tricky
- with more than 2 covariates, plotting the model is a pain

We can use this to fit more complicated curves

Next Week

Categorical Variables

Read in the data (and sub-sample)

Model Checking

Lots more plots!

Building a Plot

plot(fitted(mod), resid(mod))

(for your own plots, do what you feel comfortable with)

Add axis labels

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
 ylab="Residual")

Change the plot colour

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
 ylab="Residual", col="red")

(col= is documented in ?par, as are a lot of other options)

Add a Title

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
 ylab="Residual", col="red", main="Residual Plot")

Residual Plot

Fitted log egg mass