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Before we start. . .

Exercises to be handed in by 17:00

> if we get a folder set up



Multiple Regression

We have learned how to draw straight lines

Yi = o+ Bxj+ €

But this is limited as a model: we cannot draw more complicated
curves, and we cannot explain or predict the effects of more than
one covariate.



An Example: Bird Brains

The data wehave been using was collected to look at the effects of
longevity on brain size.

» but size is a counfounder, i.e. it also has an effect, so it had to
be included
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Another Example: Health care

The health care data isn't linear. We can try transforming, or we
can fit a polynomial (i.e. include x2, x3 etc. terms)

Japan )
Spaily A Switzerland
uthlBi@ea 1A rway
s | . gh”e TERB gk NEWlﬁﬁgg gnds y
osta IcaC ech Republic United Stat
Mexn:o ki
- Bmgg‘ﬂ/la
~ Colorrm/!jthuama
Russia

Inﬂ%}gsm

Life expectancy (years)
70

65

South Africa
T T T T T
0 2000 4000 6000 8000

Health Spending per capita



The Model

This is out basic model

P
Yi :Oé—FZBjX,'j—FE,'
Jj=1

Yi = a+ Bixit + Paxiz + Baxiz + -+ + BpXip + €;
So we replace 3x; with 3-7_; 3x;;.

» we have p covariates, labelled from j =1 to p
» we have p covariate effects
» the j* covariate values for the it individual is x;;



Design Matrices

We can write this more compactly. First, we turn the intercept into
a covariate by using a covariate with a value of 1 for every data
point. Then we write all of the covariates in a matrix, X:

1 23 30
1 49 -53
x=|1 16 -07

1 84 12

So, the first column is the intercept, the second is the first covariate,
and the third is the second covariate.

This is called the Design Matrix: it is helpful for writing down the
model



Writing the Model

Using marix algebra, the regression model becomes

Y=X6+¢

where Y, 3 and ¢ are now all vectors of length n, where there are n
data points. X is am n x p matrix.

We will not look at the mathematics in any detail: the point here is
that the model for the effect of covariates can be written in the
design matrix.



Writing the Model

%! 1
y2 1
y3 = 1
Yn 1

> o is the intercept

Y=X0+¢
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The Solution (just so you can see it)

After a bit of matric algebra, one can find the ML solution:

b=(X"X)"'XTY
where b is the MLE for 5.

In practice:

» you won't have to calculate this: the computer does it, and
» the computer actually doesn't use this



Fitting the Model

We will try to explain (log) brain mass with:

» Maximum lifespan
> logBodyMass

We can write the model as

logBrainMass ~ Maximum lifespan + logBodyMass



Fitting the Model

Parameter Estimates

Mod <- 1m(logBrainMass ~ Maximum.lifespan + logBodyMass,
data=BirdBrains)
round (summary (Mod) $coefficients, 3)

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) -2.025 0.042 -47.942 0
## Maximum.lifespan 0.009 0.002 4.368 0

## logBodyMass 0.525 0.012 43.395 0



The Model

The model is

yi = —2.02 4 0.01x;1 4+ 0.53xj2 + ¢;

Where the X's are maximum lifespan and logBodyMass

##

## (Intercept)

## Maximum.lifespan
## logBodyMass

Estimate Std. Error t value Pr(>|t])

-2.025
0.009
0.525

0.042 -47.942
0.002 4.368
0.012 43.395

0
0
0



The Model

With one covariate we have a straight line, with two we have a plane.
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Model Interpretation

The parameters say what happens if we increase a parameter by 1 if
we hold the other covariates constant

e.g. if we increase maximum lifespan by 1 year, log brain mass
increases by 0.009.

But this is scale dependent: if we measure lifespan in decades, the
coefficient changes to 0.091

Makes it difficult to compare between different covariates: how do
we compare 1 year to 1kg?



Standardised Coefficients

We can look at the standardised coefficients

» standardise by the standard deviation
» also mean-centre

BirdBrains$Max.lifespan.std <-
scale(BirdBrains$Maximum.lifespan)

BirdBrains$logBodyMass.std <-
scale(BirdBrains$logBodyMass)



Fit the Standardised Model

Mod.std <- 1m(logBrainMass ~ logBodyMass.std +

Max.lifespan.std, data=BirdBrains)

round (summary (Mod.std) $coefficients, 3)

##t Estimate Std. Error t value Pr(>|t]|)
## (Intercept) 0.571 0.016 36.134 0
## logBodyMass.std 0.987 0.023 43.395 0
## Max.lifespan.std 0.099 0.023 4.368 0



Interpret the Standardised Model

round (summary (Mod.std) $coefficients, 3)

## Estimate Std. Error t value Pr(>[tl|)
## (Intercept) 0.571 0.016 36.134 0
## logBodyMass.std 0.987 0.023 43.395 0
## Max.lifespan.std 0.099 0.023 4.368 0

» The intercept is now at the mean of Max. lifespan & log Body

Mass

> the estimates are the effects of changing covariates by 1

standard deviation.

» comparable as relative changes in the data

» effect of log body mass about 10 times bigger than lifespan



Plot the Standardised Model

log Brain Mass

2101238 4

log Body Mass

Maximum lifespan



Another use of multiple regression

Approximating curves

We can approximate curves with a Taylor series:

f(x) =~ Bg—i—ﬁl(x—)_()—i—ﬁg(x—)_()z—i—ﬂg;(x—)?)3+---—l—BP(X—)_()p

So we can fit an approximate curve by regressing Y against X, X2,
3
x* etc.



Bird Eggs

For the bird eggs data, there might be a curve, so we can fit that

BirdEggs$1gFM.std <- scale(BirdEggs$logFemaleMass) # stand
Mod.quad <- 1m(logEggMass ~ 1gFM.std + I(1gFM.std"2),
data=BirdEggs)

The model formula is
logEggMass ~ IgFM.std + I(IgFM.std"2)
We need the I() to tell R to use the quadratic



Bird Eggs Summary

round (summary (Mod.quad) $coefficients, 2)

#it Estimate Std. Error t value Pr(>|tl)
## (Intercept) 3.32 0.04 89.78 0
## 1gFM.std 1.37 0.03 47 .16 0
## I(1lgFM.std"2) -0.08 0.02 -3.28 0

We still see a positive linear term, but the quadratic is negative

» so, what does the curve look like?



Plot Bird Eggs
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Summary

We can fit models with more than 1 covariate

» comparison of the coefficients is a bit tricky
» with more than 2 covariates, plotting the model is a pain

We can use this to fit more complicated curves



Next Week

Categorical Variables



Regression & R

Read in the data (and sub-sample)

BirdEggs <- read.csv(file="../Data/BirdEggs.csv",
stringsAsFactors = FALSE)

# sub-sample 30 observations, just to make things clearer

BirdEggs <- BirdEggs[sample.int (nrow(BirdEggs), size=20),]

mod <- 1lm(logEggMass ~ logFemaleMass, data=BirdEggs)



Model Checking

Lots more plots!



Building a Plot

plot(fitted(mod), resid(mod))
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(for your own plots, do what you feel comfortable with)



Add axis labels

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
ylab="Residual")
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Change the plot colour

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
ylab="Residual", col="red")
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(col=is documented in ?par, as are a lot of other options)



Add a Title

plot(fitted(mod), resid(mod), xlab="Fitted log egg mass",
ylab="Residual", col="red", main="Residual Plot")

Residual Plot
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