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This Week: Model selection

This week you will:

I find out why model selection is needed
I be able to use AIC to compare models
I be able to compare hypotheses with F tests



Why select models?

Simulate some data:

I 100 points,
I up to 90 explanatory variables
I First variable explains ~1% of data, rest nothing

set.seed(25)
N <- 100; P <- 90
x <- matrix(rnorm(N*P), nrow=N)
mu <- 0.1*x[,1] # true R^2 = 0.1^2/(0.1^2 + 1) = 1%
y <- rnorm(N, mu)



Why select models?

Use 2, 3, 4. . . explanatory variables (sapply() loops over 2:P)

R2 <- sapply(2:P, function(pp, XX, Y) {
mod <- lm(y ~ XX[,1:pp]) # fit the model

# return coefficient, conf. int. R^2
c(coef(mod)["XX[, 1:pp]1"],

confint(mod)["XX[, 1:pp]1",],
summary(mod)$r.squared)

}, XX=x, Y=y)



Why select models?

Plot estimate & R2

par(mfrow=c(2,1), mar=c(2,4.1,1,1), oma=c(2,0,0,0))
plot(2:P, R2[4,], ylab=expression(R^2), ylim=c(0,1))
plot(2:P, R2[1,], ylim=range(R2[2:3,]),

ylab="Coefficient for X1")
segments(2:P, R2[2,], 2:P, R2[3,])
abline(h=0.1)
mtext("Number of parameters", 1, outer=TRUE)



Plot estimate & R2
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What Happens

We could fit a model with every covariate in it

When we add more variables,

I R2 increases
I parameter estimates get less precise
I interpretation can become more difficult

So we only want to important variables



Two types of problem: two solutions

Testing a specific hypothesis

I confirmatory

Finding a good model

I exploratory



Question: Which of theseis exploratory & which
confirmatory?

Candidate Gene Approach

I does BRCA1 affect the probability of getting cancer?

GWAS

I which of these 30 000 SNPs explains the probability of getting
cancer?



Hypothesis Testing

Hypothesis Testing is asymmetrical.

We ask

“Is the model without the effect sufficient to explain the data?”



How to Do Statistical Hypothesis Testing

1. get a null hypothesis (i.e. without the effect)
2. get an alternative hypothesis (i.e. with the effect)
3. Chose a test statistic (e.g. the likelihood)
4. calculate the distribution of the test statistic if the null

hypothesis was true
5. ask if the observed value of the statistic falls within the null

distribution
6. if it does not, declare the null hypothesis wrong



An example

Lk <- "https://www.math.ntnu.no/emner/ST2304/2019v/Week1/Olymp100m.csv"
Times100m <- read.csv(Lk)
Use <- Times100m$Sex=="Women" & !is.na(Times100m$WinningTime)
WomensTimes <- Times100m[Use,]
plot(WomensTimes$Year, WomensTimes$WinningTime)
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An example
get a null hypothesis

I The slope is zero

get an alternative hypothesis

I The slope is not zero

Chose a test statistic

I The slope
I The likelihood

calculate the distribution of the test statistic if the null hypothesis
was true

I Your job!

ask if the observed value of the statistic falls within the null
distribution

I Your job!



Your job. . .
Is the likelihood from the data likely if the null hypothesis is true?

Use this code & compare the model.H1 likelihood with the null
distribution (hist()might help)

# Null Hypothesis
model.H0 <- lm(WinningTime ~ 1, data=WomensTimes)
# Alternative Hypothesis
model.H1 <- lm(WinningTime ~ Year, data=WomensTimes)

SimNullModel <- function(mod, X) {
Sim <- simulate(mod) # simulate data from model
model.test <- lm(Sim[,1] ~ X)
logLik(model.test) # extract log-likelihood

}

Lhood <- replicate(1e3, SimNullModel(mod=model.H0,
X=WomensTimes$Year))



Why Use the Likelihood?

It measures model fit

I Pr(Data|parameters)

It has some useful statistical properties

Summarises whole model, not just a parameter



Some statistical theory

In general, we know the distribution for the difference between
likelihoods when the models are nested:

−2(log(L1)− log(L0))

follows a χ2
p distribution, where p is the difference in number of

parameters

Nested models: Model A is nested within model B if we can get
model A by setting some parameters of model B to zero



Some statistical theory
For the normal distribution, the χ2 works if we fix σ2. If we cannot,
it adds some extra error. So we use

−2(log(L1)− log(L0))
s2

where s2 is the estimate of the residual variance. This also follows a
χ2 distribution

We know from statistical theory that the distribution of the ratio of
χ2s follows an F distribution

The F distribution has 2 parameters, known a “degrees of freedom”.

I numerator degrees of freedom: how many extra parameters are
in the alternative model

I denominator degrees of freedom: how many parameters are
used to estimate σ̂2

I taken from the alternative model



Sums of Squares

The log-likelihood for a normal distributiuon is

l(x|µ, σ2) = −n
2 log σ2 −

n∑
i=1

(xi − µ)2

2σ2

And the main bit is
∑n

i=1
(xi −µi )2

2σ2

which is just a sum of squares, and a variance term

I estimate σ2 with another sum of squares



Take-home Method

Use sums of squares to calculate log-likelihoods & residual deviance

Degrees of freedom are parameters of the F-distribution that we use
to compare the estimated deviance to

In reality, R will do the hard work



With R
We can get R to make the comparison:

model.H0 <- lm(WinningTime ~ 1, data=WomensTimes)
model.H1 <- lm(WinningTime ~ Year, data=WomensTimes)

(an <- anova(model.H0, model.H1))

Analysis of Variance Table

Model 1: WinningTime ~ 1
Model 2: WinningTime ~ Year

Res.Df RSS Df Sum of Sq F Pr(>F)
1 17 3.3550
2 16 0.7086 1 2.6465 59.76 8.626e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test statistic is the F-ratio



Your Turn

For the Yields data from last week, is there an interaction between
treatment and date (i.e. before/after 1970)?

Yld <- "https://www.math.ntnu.no/emner/ST2304/2019v/Week8/Hoosfield_Yields.csv"
Yields <- read.csv(Yld)
Yields$After1970 <- Yields$StartYear>1969
model.yield.Int <- lm(yield ~ After1970 * Treatment,

data=Yields)
model.yield.Main <- lm(yield ~ After1970 + Treatment,

data=Yields)



Degrees of Freedom

We have N data points. Each is a “degree of freedom” that we can
use in the estimation Each df can be spent to estimate one
parameter The rest are used to estimate the residual variance

e.g.

yi = α+ βxi + εi

2 parameters (α and β), so N − 2 can be used to estimate σ2

N − 2 is the residual degrees of freedom



Degrees of Freedom

If we compare 2 models, the difference in the residual degrees of
freedom is the number of extra parameters in the alternative model

I this is the degrees of freedom.

(the same as used in a χ2 test)



ANOVA made easier
We have just used anova() to compare 2 models, but it has
traditionally been used to compare several:

round(anova(model.yield.Int), 2)

Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

After1970 1 13.06 13.06 56.61 < 2.2e-16 ***
Treatment 3 93.87 31.29 135.62 < 2.2e-16 ***
After1970:Treatment 3 19.81 6.60 28.62 < 2.2e-16 ***
Residuals 64 14.77 0.23
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



ANOVA made easier
Each row is a test

print(xtable::xtable(anova(model.yield.Int)), digits=2,
comment=FALSE)

Df Sum Sq Mean Sq F value Pr(>F)
After1970 1 13.06 13.06 56.61 0.0000
Treatment 3 93.87 31.29 135.62 0.0000
After1970:Treatment 3 19.81 6.60 28.62 0.0000
Residuals 64 14.77 0.23

It compares a model with the terms above to one including that
term e.g. the replicate line compares
After1970 + Treatment

to
After1970 + Treatment + After1970:Treatment

I After1970:Treatment is the interaction



Why is ANOVA called ANOVA

ANOVA = Analysis of Variance

The Mean Sq is the mean square, i.e. Sum Sq/Df

I when the data cooperate, it is an estimate of the variance
explained by that effect

I so we can sometimes use the Mean Square to eyeball how
important a variable is



For you. . .

Do the mens & womens times improve at different rates?

mod <- lm(WinningTime ~ Sex*Year, data=Times100m)
plot(Times100m$Year, Times100m$WinningTime,

col=as.numeric(Times100m$Sex),
xlab="Year", ylab="Winning Time (s)")
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What we have done today

We can make models that are too big & horrible

If we have specific hypotheses w, we can test them

For regression, we use an ANOVA

I caclulates sums of squares, degrees of freedom, F ratios

We don’t yet know how to deal with exploratory problems

I tomorrow!



Exploratory Problems

GWAS

I which genetic marker is correlated to a trait?

Species distributions models

I which environmental covariate explains where a species is?



Exploring for Good Models

Sometimes we don’t have strong hypotheses. Instead we might be
exploring which variables might have an effect

I our aim is to get a good model overall
I e.g. for prediction



What does a good model look like?

Discuss what you would want from a good model



The problem
A model with always fit better if you add a parameter
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The problem

Key issue: is adding the extra parameter worth it?

ANOVA answers this by asking if the improvement from the extra
parameter can be explained as noise



What does a good model look like?

I Simple
I Fits the data well
I Understandable

We can measure simplicity and fit.

I Fit: likelihood
I Simplicity: number of parameters



The Example

We will only use 20 covariates:

set.seed(25)
NSmall <- 100; PSmall <- 20
xSmall <- matrix(rnorm(NSmall*PSmall), nrow=NSmall)
mu <- 0.1*xSmall[,1] # true R^2 = 0.1^2/(0.1^2 + 1) = 1%
ySmall <- rnorm(NSmall, mu)



Penalisation

Another way of looking at the problem: we measure model adequacy

I is the model good enough for what we want?

We penalise complicated models

I measure complexity by number of parameters

Find the ‘best’ model as one with optimum between fit & complexity



How to Penalise

There are several ways to penalise. Here I will mention two, which
chose different criteria

I AIC: Akaike’s Information Criterion
I BIC: Bayesian Information Criterion

AIC tries to find the model that best predicts the data

BIC trues to find the model most likely to be true

Unfortunately, it’s not possible to do both at the same time



AIC

Finds the model that would best predict replicate data

AIC = -2 Likelihood + 2 Number of Parameters

AIC = −2log(p(y |θ)) + 2p



BIC

Finds the model which is most likely to be “true”

BIC = -2 Likelihood + log(N) Number of Parameters

AIC = −2log(p(y |θ)) + log(n)p

I log(n) = log(sample size)
I penalises more than AIC



Extracting AIC
We can use the AIC()function:

model.null <- lm(ySmall ~ 1)
model.full <- lm(ySmall ~ xSmall)
model.2 <- lm(ySmall ~ x[,2])

AIC(model.null, model.2, model.full)

df AIC
model.null 2 296.1408
model.2 3 294.0873
model.full 22 314.3215

A lower value is better, so the null model is better than having all of
the variables in it, and the model with variable 2 is slightly better
still.



Your task

Fit all of the models with one covariate (i.e. y~x[,1], y~x[,2]
etc.). Which one gives the best model (i.e. has the lowest AIC)?

model.1 <- lm(ySmall ~ xSmall[,1])
model.2 <- lm(ySmall ~ xSmall[,2])
model.3 <- lm(ySmall ~ xSmall[,3])
# ... up to
model.20 <- lm(ySmall ~ xSmall[,20])

AIC(model.1, model.2, model.3, model.20)



Using AIC/BIC

Full Subset Selection

I calculate AIC/BIC for every model
I pick the best (= lowest)

Usually, if the values are within ~2 of each other, the models are
pretty similar.



Fit all of the models

This can get ugly (using the full data set with 80 variables will take
too long)

library(bestglm) # might need install.packages("bestglm")
UseData <- data.frame(cbind(xSmall, ySmall))

AllSubsetsAIC <- bestglm(Xy=UseData, IC="AIC")
AllSubsetsBIC <- bestglm(Xy=UseData, IC="BIC")



Looking at all of the models

The bestglm object has several pieces:

names(AllSubsetsAIC)

## [1] "BestModel" "BestModels" "Bestq" "qTable" "Subsets"
## [6] "Title" "ModelReport"

Subsets gives the AIC (or BIC) for the best models:

AllSubsetsAIC$BestModels

Run this yourselves, but the output is big



Looking at the best model

BestModel is the lm object for the best model

coef(AllSubsetsBIC$BestModel)

Run this. Which model is best according to AIC, and which
according to BIC?

How good are the models? How do they compare with the truth?



If we have time. . .

A more relaistic model for reality can be that everything has an
effect, but some have a stronger effect than others. We can look at
how model selection behaves then:

betas <- 0.3*(0.9^(1:PSmall))
# plot(1:PSmall, betas)
set.seed(25)
NSmall <- 100; PSmall <- 20
xSmall <- matrix(rnorm(NSmall*PSmall), nrow=NSmall)
mu <- sweep(xSmall, 2, betas, '*') # true R^2 = 0.1^2/(0.1^2 + 1) = 1%
yTaper <- rnorm(NSmall, mu)
TaperData <- data.frame(cbind(xSmall, yTaper))

AllTaperAIC <- bestglm(Xy=TaperData, IC="AIC")
AllTaperBIC <- bestglm(Xy=UseData, IC="BIC")



What we’ve done this week

Learned we sometimes need to compare models to find the best

Use ANOVA to compare models when we have specific hypotheses

Measure model adequacy with AIC or BIC, and compare lots of
models to select the best, when we don’t have specific hypotheses



Next Week

Generalised Linear Models

I when things aren’t normal


