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Recap of 
yesterday



Useful for non-normal and non-linear data

Generalised linear models

Normally 
distributed 

error

linear regression
ANOVA
ANCOVA
(linear models)

GLMs

Binomial error

Poisson error

Gamma error



Three main components of a GLM:

Random part 
- the data (with an assumed distribution e.g. Binomial)

Systematic part
- the model for each data point (linear predictor) e.g. ∑" #$"%"

The link function
- transforms the model (linear) onto scale of data e.g. log(∑" #$"%")

Components of a GLM



More on the 
Random part



GLM can use Normal, Binomial, Poisson, Gamma, 
and some quasi- distributions

Which distribution do I use?

quasi = almost



GLM can use Normal, Binomial, Poisson, Gamma, 
and some quasi- distributions

Which distribution do I use?



Parameters: mean (!) and variance ("#)

Properties: Continuous, symmetrical around mean, 
single mode

Examples: height, biomass, running times

The Normal Distribution

* Picture from Wikipedia



The Binomial Distribution

Parameters: probability (!) 

mean = "! (" = number of successes)
variance = "!(1 − !)

Properties: Gives probability of success from two 
possible outcomes (bounded between 0 and 1)

Examples: survival, sex ratio, land or sea

* Picture from Wikipedia



The Poisson Distribution

Parameters: mean (!) 
variance = mean

Properties: Successes in time or space (counts), 
discrete, positive

Examples: number of plants, number of eggs, 
population size

* Picture from Wikipedia



• Look at the examples of data on the next slides (the same as 
yesterday)

• This time you need to decide which distribution would be most 
appropriate to model these data



Question: How does body weight influence survival probability in sparrows?

Data: Response = whether the bird survived (1), or not (0). Explanatory = body 
weight in grams



Question: How does body weight influence total length of the sparrows?

Data: Response = total length in mm. Explanatory = body weight in grams



Question: How does lay date influence the number of chicks that leave the nest?

Data: Response = number of chicks that fledge (leave nest alive). Explanatory = lay 
date (day since 1st April)



Link functions and distributions

Family 
(distribution)

Default link 
function 
(canonical)

Other common 
link functions

Gaussian Identity  (!)
Binomial Logit  (log( '

()')) Probit, cloglog

Poisson Log  (log(!)) Identity



Basics of a 
Poisson GLM in R 
(log-linear model)



Does location of nest influence clutch size?

Phoenix clutch size

Mythical bird. Counted eggs in nests. 

Counted eggs in two places Scotland and Norway.

Want to see if the location of the nest influences the number of 
eggs laid.



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)General likelihood for GLM:

Poisson likelihood: ! / 0 = −/ + 0 log / − log(0!)
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Poisson likelihood: ! / 0 = −/ + 0 log / − log(0!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2

General likelihood for GLM:

Poisson likelihood: ! 2 3 = −2 + 3 log 2 − log(3!)



The likelihood
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The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2
)(#) = −34 = −3567 8 = −2
-(%, +) = − log(9!)

General likelihood for GLM:

Poisson likelihood:

Yay, it fits the same format!

! 2 9 = −2 + 9 log 2 − log(9!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2
)(#) = −34 = −3567 8 = −2
-(%, +) = − log(9!)

General likelihood for GLM:

Poisson likelihood: ! 2 9 = −2 + 9 log 2 − log(9!)

Also – we can see our link function



• Take the data for the phoenix clutch size 

• https://www.math.ntnu.no/emner/ST2304/2019v/Week11/Phoenix.csv

• Fit a GLM with a Poisson family and log link to look at whether 
location of nest influences number of eggs

• Basic formula is below, you will need to edit

• Look at results using coef() THEN STOP

glm(Y ~ X, data,  family = gaussian(link=identity))  

https://www.math.ntnu.no/emner/ST2304/2019v/Week11/Phoenix.csv


Model selection 
with GLMs



Model selection

A bit different for GLMs

Terminology changes

Exploratory model selection with AIC/BIC:

AIC/BIC = Deviance + penalty

Deviance = −2 ∗ $(&|()

Confirmatory model selection using the anova() function:

Becomes analysis of deviance
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Model selection

A bit different for GLMs

Terminology changes

Exploratory model selection with AIC/BIC:

AIC/BIC = Deviance + penalty

Deviance = −2 ∗ $(&|()

Confirmatory model selection using the anova() function:

Becomes analysis of deviance Not quite the same

SAME



Analysis of deviance

Compares deviance instead of sum of squares

Residual deviance = twice the difference in loglikelihood of saturated 
model (parameter for each data point) and the proposed model

Deviance = difference in residual deviances



Analysis of deviance

Compares deviance instead of sum of squares

Residual deviance = twice the difference in loglikelihood of saturated 
model (parameter for each data point) and the proposed model

Deviance = difference in residual deviances

anova(mod, mod1, test="LRT")



Analysis of deviance

Compares deviance instead of sum of squares

Residual deviance = twice the difference in loglikelihood of saturated 
model (parameter for each data point) and the proposed model

Deviance = difference in residual deviances

anova(mod, mod1, test="LRT") LRT = likelihood ratio test



Analysis of deviance

Compares deviance instead of sum of squares

Residual deviance = twice the difference in loglikelihood of saturated 
model (parameter for each data point) and the proposed model

Deviance = difference in residual deviances

anova(mod, mod1, test="LRT")
Deviance follows 
Chi2 distribution 
so probability 
value is related 
to that



• Look back at the previous slides and the data

• What is our question here?

• Is this a confirmatory or exploratory question?

• Conduct model selection for this question using code given 
on previous slide

• What do you conclude about the question?



Checking model 
fit with GLMs



Assumptions of a GLM

Assumptions of a GLM:

• Lack of outliers

• Correct distribution used

• Correct link function is used

• Correct variance function is used

• Dispersion parameter is constant

• Independence of y



Checking the model fit

For linear models we used:

Residuals vs fitted plots

Normal Q-Q plots

Cook’s distance

These are easy to interpret – we know what we are looking for

This is not the case for GLMs – non-normal variance!



Checking the model fit

For linear models we used:

Residuals vs fitted plots – equal variance and linearity

Normal Q-Q plots – normality of residuals

Cook’s distance - outliers

These are easy to interpret – we know what we are looking for

This is not the case for GLMs – non-normal variance!



Checking the model fit



Checking the model fit

Need a way to handle non-constant variance

Want to produce plots that are roughly normal

Two ways: Pearson and Deviance residuals (neither is perfect)

Both scale residual by variance (in some way)

Pearson residuals: (" − $%)/(%
Deviance residuals: sgn ,- − . ,- /-

sgn(x) = 1 when x > 0 and -1 when x < 0



Checking the model fit

Need a way to handle non-constant variance

Want to produce plots that are roughly normal

Two ways: Pearson and Deviance residuals (neither is perfect)

Both scale residual by variance (in some way)

Pearson residuals: (" − $%)/(%
Deviance residuals: sgn ,- − . ,- /-

sgn(x) = 1 when x > 0 and -1 when x < 0

Default for 
glm



Checking the model fit

PearsonDeviance



Checking the model fit - summary

These plots are still important (with tweaks):

Residuals vs fitted plots

Normal Q-Q plots

Cook’s distance

Once we have scaled the residuals to account for non-equal 
variance, they should be approximately normal

Outliers still important

Plots still useful even if they look weird



• After exercise 3 you should have a final model

• Check the fit of the model using Pearson and Deviance 
residuals. Check linearity, normality, and outliers

• What do you think?

code:

resid(model, type=”pearson”)
resid(model, type=”deviance”)
fitted(model)

plot(fitted, residuals)
qqnorm(residuals)
qqline(residuals)
plot(model, which=4) # cook’s distance



• Now you have checked your model fit interpret the output

• Remember the link function! The parameters (coefficients) 
are for the linear predictor, which sits inside the link function

• Our link here was log(), the inverse is exp()



Lecture Summary

Recap of yesterday

More on the Random part
Choose a distribution based on your data

Basics of the Poisson GLM
Uses log link as default and used for count data

Model selection with GLMs
Bit different for confirmatory selection – uses analysis of 
deviance

Checking model fit with GLMs
Bit more difficult for GLMs but can still use similar tools
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