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Question vocabulary:

¢ Describe: is asking you to summarise some outputs or findings e.g. “X is larger than Y” or “X has a straight line
relationship with Y with some outliers” or “The confidence interval is 2.4 to 3.1”

Interpret: is asking you to take what you can describe and put it into context (especially back into the units it was
calculated from) e.g. “X is larger than Y by 5 days, this means that...” or “X has a straight line relationship with Y of 1.5
degrees to every day change in X. This shows that it will be 10.5 degrees warmer at the end of the week” or “The
confidence interval is 2.4 to 3.1, meaning we are 95% confident that the population mean lies between these values. The
Cl does not span zero so we are confident our estimate is statistcally different to zero.”

o Explain: similar to interpret. It is asking you to look at the result or estimate, whatever it refers to and then think
about the reasons why it is like that e.g. "X has narrower confidence intervals than method Y because it uses the
normal distribution instead of the T distribution"

o Effect: what ever we are estimating, usually the beta or beta1 (if using matrix) value. This is typically a slope or a
difference, depending on whether we are using continuous or categorical data.

e Compare: look at two results, see whether they are different or the same. Then explain why this could be the case
e.g. "X and Y give the same results because they are based on the same underlying process" "X and Y give different
results because they use a different sampling distribution"

Statistical vocabulary:

e estimand: a "real world" value (e.g. the proportion of the earth that is land) that we would like to estimate. It is
estimated by an estimator

e estimator: a statistic that is an estimate of some "real world" value (e.g. the proportion of a sample of the earth that
is land). It estimates an estimand

¢ non-linearity: similply means not linear. Usually used in terms of testing the assumption of linearity in a linear
regression. Non-linearity refers to any deviation from a linear trend or pattern in data. The typical way would be
curved data

heteroscedacitiy: long complication word simply means non-equal variance. Equal variance means the residuals
are homoscedastic. A typical pattern is increasing variance along a regression line, but can take many other forms
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General formulation of likelihoods — not in exam

v0 — b()
a(9)

L(Oly) = +c, P)
0 is the expected value (e.g. the mean)

y is the data

L(@]y) is likelihood of expected value given the data

¢ is the variance (dispersion)

a, b, and c are functions — will depend on the distribution used



Generalised linear models

Similar to linear models but much more flexible
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The binomial distribution

Data: r, number of successes in N trials

Parameters: probability (p)




The binomial distribution

Data: r, number of successes in N trials
Parameters: probability (p)

Now using it in a GLM — called logistic regression




Binomial (log) likelihood
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Binomial (log) likelihood
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Binomial (log) likelihood
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log )}r

y0 = b()
a(9)
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0 is the expected value (e.g. the mean) = log (ﬁ)

y is the data = %
[(8]y) is likelihood of expected value given the data
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Binomial (log) likelihood

%log (1 f p) + log(1 — p)

log(%) +

1/N
0 — b(0
101 = T2+ 0. 0)
9=10g(&)
y=5

Yay, it fits the same format too!



Binomial (log) likelihood
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(again)



Binomial (log) likelihood

%log (1 f p) + log(1 — p)
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T Also — we can see our link function
(again) called logit



When and why to
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Exercise 1: The data

 Data from 1986 to 1996
« Population of Soay sheep

 Today we will look at what influences survival

« Data on survival, body weight, age, year, and population size




Exercise 1: Why is a straight line bad?

« Look at the data below, a straight line is fitted. Why is this a bad
idea? (Think of several reasons)

« If you get stuck, think about what survival probability you would
predict based on this line for a body weight of 40kg

« What shape line do you think would fit better?
1 SRS G,

Survival probability

0.0 02 04 06 08 1.0

Weight (kg)



Binomial GLM

Still regression based
Aim is to predict Y values for a given X
Here Y is probability being in state 1

Creates curved lines bounded at 0 and 1

1.0

—

Survival probability

00 02 04 06 0.8

e s e am '
200 300 400 500

Population size



Exercise 2: Fitting a Binomial GLM

« Data at

« Fit a Binomial GLM to answer “Does body weight influence
survival probability in sheep?”

« Look at result using coef() and confint()
« What do the coefficients represent? (i.e. the (Intercept) and

Weight) — don’t worry about the link just think where they fit into
Y; = t &

glm(Y ~ X, data, family = binomial(link=logit))


https://www.math.ntnu.no/emner/ST2304/2019v/Week12/SheepData.csv

Ways of fitting a GLM

Option 1 for fitting was as a single factor (Here)

Option 2 for fitting (Alternative)
You can make two columns (one of success and one of failures)

Accounts for number of trials (Number of trials is number in
population)

Y <- cbind(NumSurvived, NumDied)
model2 <- glm(Y ~ PopSize, family = binomial(link=logit))

NumSurvived NumDied PopSize

[1,] 50 161 211
[2,] 73 217 290
[3,] 124 197 321
[4,] 98 233 331
[5,] 136 221 357
[6,] 109 305 414
[7,] 99 336 435
[8,] 128 315 443
[9,] 50 407 457

[10,] 174 401 575



More on link
functions — Logit
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Link functions

We have seen where we can find the link function (help,
equation, google)

Different link functions for different distributions
Link functions have a name and an equation
Used the log link last week

This week - logit



Link functions
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Logit link

p
1-p

u = log( )

The inverse Is
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Logit link
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Interpreting the logit

E.g. Betting:
Odds of 10:1 (if you bet 1kr you win 10kr)
Probability for this = Success/(Success+Failure)

1/(1+10) = 1/11 = 0.09

* image from Wikipedia



Interpreting the logit

(Intercept) Total
-0.7191669164 -0.0006582301
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(Intercept) Total
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Interpreting the logit

(Intercept) PopSize

2.945 -0.004
a+ X
1 —
1+e#r P
E.g.
For X (PopSize) = 300
1
1 + e—(2.945+(~0.004+300)) = 0.85
For X (PopSize) = 400
1
= 0.79

1 4+ e—(2.945+(-0.004+400))



Interpreting the logit

or plot it!
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Interpreting (and
plotting) results

from a Binomial
GLM




EXxercise 3: Interpretation

 Look at the coefficient values, what can these tell us
about the relationship between survival probability and
weight?

 Use the inverse link equation to work out the
probability of survival 0 weight (the intercept)

* Use the inverse link to work out the change in
probability of survival between the mean body weight
(20kg) and one standard deviation above the mean
population size (25kg)



EXxercise 3: Help

« Equation for inverse of logit link

Your prediction = ——
1+e~H

Remember: u =

« Howtowriteitin R
prediction = 1/(1+exp(-(Intercept + (Slope*X))))

* You need to fill in your own intercept, slope, and X
values



EXxercise 4: Plotting

« Can be easier to interpret by plotting

« Cannot use abline() here

* Instead we predict Y values given our X values

* Follow code below to plot your results — what can you interpret?
Why might you expect this pattern? (Biology!)

# Make some 'new' X values to predict for

newdata <- data.frame(Weight = seq(@, 35, 1))

# predict, including standard error (se.fit)

predictions <- predict(modell, newdata, type="response", se.fit=T)

# plot the predicted values

points(seq(@, 35, 1), predictions$fit, type='l", col=2)

# and plot the confidence intervals

# £ 2 * standard error predictions

points(seq(@, 35, 1), predictions$fit+(2*predictions$se.fit), type='1l", col=2, lty=2)
points(seq(@, 35, 1), predictions$fit-(2*predictions$se.fit), type='1l", col=2, lty=2)




Rest of this week

Tomorrow will go through example together

Exercise will be whole data analysis yourselves
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Lecture Outline

What is the binomial GLM (logistic regression)?

Model we can use for binary responses. Bounded 0 to 1
and non-linear

When and why to use a binomial GLM?

For binary response to predict within the possible
outcomes

More on the logit link function
Produces log odds, now know the equation for it and the
inverse

Interpreting (and plotting) results from a binomial GLM
Plotting can be easier to interpret, need to predict not

abline()



