
GLMs with a Poisson

Bob O’Hara

March 8, 2019



Last Week: The binomial distribution

What is the binomial GLM (logistic regression)?

When and why to use a binomial GLM?

Link Functions

Categorical and continuous variables

Overdispersion



This Week: log-linear models

This week you will:

I learn about log-linear models
I learn about over-dispersion

I when there is more error than you expect



A Typical Problem: Count data

Numbers of

I fish caught
I murders
I offspring
I bacterial/fungal colonies
I deaths due to lip cancer



A Model for Counts: Fishing

Figure 1: Anglers by Raoul Dufy

Anglers by Raoul Dufy



A Model for Counts: Fishing

We sit by the Seine, fishing. We catch fish at a constant rate

If we catch fish for an hour, how many fish do we catch?



A Model for Counts: Fishing

If we catch fish at rate µ, the mean number we catch in time t will
be λ = µt

The actual number will vary, and will follow a Poisson distribution:

Pr(N = r |λ) = λr e−λ

r !



A Model for Counts

Figure 2: Siméon Denis Poisson

By François Séraphin Delpech - http://web4.si.edu/sil/
scientific-identity/display_results.cfm?alpha_sort=W, Public
Domain,
https://commons.wikimedia.org/w/index.php?curid=536305
(Poisson was a baron, not a count)

http://web4.si.edu/sil/scientific-identity/display_results.cfm?alpha_sort=W
http://web4.si.edu/sil/scientific-identity/display_results.cfm?alpha_sort=W
https://commons.wikimedia.org/w/index.php?curid=536305


The Poisson distribution

Look at simulations of the Poisson distribution for different means
(plot(table(...)) is nicer than hist())

What happens to the shape of the distribution when

I the mean is less than 1?
I the mean equals 1
I the mean is above 1
I the mean gets large?

Pois <- rpois(1e3, 1)
plot(table(Pois), lwd=8, lend=3)



Is the Poisson a GLM?

The log-likelihood:

l(N = r |λ) = r log λ− λ− log(t!)

GLM likelihood:

l(θ|y) = yθ − b(θ)
a(φ) − c(φ, y)



Is the Poisson a GLM?

The log-likelihood:

l(N = r |λ) = r log λ− λ− log(t!)

GLM likelihood:

l(θ|y) = yθ − b(θ)
a(φ) − c(φ, y)

So a(φ) = 1

and θ = log λ



Interpretation

This is a GLM

The natural link function is a log link

I very rare something else is used

If we are counting, the process is multiplicative (double the effort,
double the counts)

This is additive on the log scale.



Interpretation

The log link means that the model is multiplicative

log(λ) = α+ βx
λ = eα+βx = eαeβx

(we’ll assume x is a dummy variable, i.e. 0 or 1)

e.g. if α = 0, eα = 1. Then if β doubles the mean (i.e. λ = 2eα),
β = log(2) = 0.69



Some claims

If a coefficient is small, it is (approximately) the percent increase

I eα+β means an increase by eβ ≈ 1 + β times (if β is small)

The coefficients are symmetrical

I a value of +0.01 increases the mean by e0.01 times
I a value of -0.01 decreases the mean by e0.01 times



Some claims: An Exercise

Write some questions to illustrate these claims:

I If a coefficient is small, it is (approximately) the percent
increase

I The coefficients are symmetrical

e.g. “If we have a Poisson process with a mean of 1, what value of
β would we need to double the mean?”



Model Fitting

Model fitting is easy:

mu <- seq(1,2, length=10)
Count <- rpois(length(mu), mu)
m1 <- glm(Count ~1, family=poisson("log"))
m1a <- glm(Count ~1, family="poisson")



An Example: Himmicanes

A few years a go a strange paper appeared in PNAS that suggested
that hurricanes in the USA with female names caused more deaths
than those with male names.

Stem <- "https://www.math.ntnu.no/emner/"
Fl <- "ST2304/2019v/Week13/Himmicanes.csv"
Data <- read.csv(paste0(Stem,Fl), stringsAsFactors=FALSE)
# Select hurricanes with > 100 deaths
BigH <- which(Data$alldeaths>100)



Himmicane Data

plot(Data$Year, Data$alldeaths, col=Data$ColourMF,
type="p", pch=15, xlab="Year",
ylab="Number of Deaths")

text(Data$Year[BigH], Data$alldeaths[BigH],
Data$Name[BigH], adj=c(0.8,1.5))

legend(1984,200,c("Male","Female"),fill=c("blue","red"))
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The Data

The variables in the data are:

I Year: Year
I Name: Hurricane’s name
I Gender: Gender (0: Male, 1: Female)
I MasFem: A scoring of how feminine the name sounds (we

won’t use this here)
I Minpressure: minimum air pressure in the hurricane (a measure

of stength)
I Category: Category of hurricane (larger is more severe)
I NDAM: Normalised damage (i.e. how much the hurricane cost,

corrected for inflation etc.)
I alldeaths: Number of deaths

The aim is to predict the number of deaths.



The Modelling Step 1: Chose a model

Your task (to discuss in your group):

I what distribution should we use?
I what link function?
I which variables do you want to consider to explain the number

of deaths?
I should we only use Gender, or do we need other variables?



Step II: Get Estimates of the Parameters

Fit the model!

Does there seem to be an effect of gender?



Today

More with the Poisson

I overdispersion and residuals



Before we Start

We will have revision sessions on these dates:

14th, 16th and 21st May

Before then we will put up a practice exam (with solutions) as well
as solutions to all of the exercises

End of Course Survey: see Blackboard (under “Surveys”). Your
chance to tell us what we can do better



Yesterday

We were introduced to the Poisson distribution

l(N = r |λ) = r log λ− λ− log(t!)

Pois <- rpois(1e3, 1.4)
plot(table(Pois), lwd=8, lend=3)
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Yesterday

It is natural to model counts my multiplying

I additive on the log scale

The log link is thus a natural link function

Model fitting is easy:

m1 <- glm(Count ~ 1, family=poisson("log"))



Yesterday

We looked at the Himmicanes data
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The Modelling

Step 1: Chose a model

Step II: Get Estimates of the Parameters

Data$Category <- factor(Data$Category)
# these all use family="poisson", data=Data
mod.poisMinP <- glm(alldeaths ~ Gender+Minpressure, family="poisson", data=Data)
mod.poisCat <- glm(alldeaths ~ Gender+Category, family="poisson", data=Data)
mod.poisNDAM <- glm(alldeaths ~ Gender+NDAM, family="poisson", data=Data)



Today

Step III: Is the model any good, and can we improve it?

Step IV: Comparing Models



Step III: Model Checking

(we could also do model selection now, but as we will find a big
problem, it’s quicker to look at this first)

A big problem: over-dispersion



Overdispersion

Too much variation!

Mean = Variance for a Poisson

But the data may have more variation (“extra-Poisson variation”)



What happens when we have overdispersion?
Let’s simulate some data without over-dispersion

alpha <- 1.5; beta <- 0.1
X <- rnorm(1e3)
lambda <- exp(alpha + beta*X)
Y <- rpois(length(lambda), lambda)
var(Y)

## [1] 4.787872

. . . and simulate some data with over-dispersion

eps <- rnorm(length(X), 0, 0.5)
lambda2 <- exp(alpha + beta*X + eps)
Y2 <- rpois(length(lambda2), lambda2)
var(Y2)

## [1] 14.21932



What happens when we have overdispersion III?

Fit the model without over-dispersion

Look at the standard errors (= standard deviation of the estimators)

mod.noOD <- glm(Y ~ X, family = poisson())
summary(mod.noOD)

. . . and with overdispersion

mod.OD <- glm(Y2 ~ X, family = poisson())
summary(mod.OD)



What happens when we have overdispersion IV?

So, overdispersion increases the variation in the data

This should increase the standard errors (as more variation means
we are less certain), but is doesn’t.

Does this matter? We can look at what the distribution of
parameters should be



What happens when we have overdispersion IV?

We can do these simulations lots of times, and look at the standard
deviation

SimWithOD <- function(al=1.5, be=0.1, sigma=0, N=1e3) {
X <- rnorm(N)
eps <- rnorm(N, 0, sigma)
lambda <- exp(al + be*X + eps)
Y <- rpois(length(lambda), lambda)
mod <- glm(Y ~ X, family = poisson())
coef(mod)["X"]

}
Repbeta0 <- replicate(1e2, SimWithOD(sigma=0))
Repbeta1 <- replicate(1e2, SimWithOD(sigma=1))
c(NoOD=sd(Repbeta0), OD=sd(Repbeta1))



What happens when we have overdispersion V?

Pause Here



The effects of Over-dispersion

The uncertainty in the estimates increases but this isn’t seen in the
confidence intervals

However, we can see it in the residual deviance increase

I with no overdispersion, this should (roughly) equal the residual
degrees of freedom



Dealing With Overdispersion

There are a few ways to deal with overdispersion

I Correct in the likelihood, using φ
I Use a mixed model (not in this course, sorry)
I Use a different distribution



Correct the likelihood I

The likelihood is

l(θ|y) = yθ − b(θ)
a(φ) + c(y , φ)

So we can estimate φ, the dispersion. We can use the deviance
ratio.

Deviance/Degrees of Freedom

Dispersion <- deviance(mod.OD)/df.residual(mod.OD)

This should equal 1: values below about 1.2 are fine

(without overdispersion, this actually follow a χ2 distribution)



Correct the likelihood II
We can plug the dispersion estimate into the summary:

summary(mod.OD, dispersion = Dispersion)

##
## Call:
## glm(formula = Y2 ~ X, family = poisson())
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.3983 -1.3281 -0.3925 0.7541 7.6240
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.63160 0.02245 72.681 <2e-16 ***
## X 0.05605 0.02284 2.454 0.0141 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 2.563956)
##
## Null deviance: 2574.3 on 999 degrees of freedom
## Residual deviance: 2558.8 on 998 degrees of freedom
## AIC: 5768.3
##
## Number of Fisher Scoring iterations: 5



Correct the likelihood III

The effect is to increase standard errors by sqrt(Dispersion):

summary(mod.OD)$coefficients[,"Std. Error"]

## (Intercept) X
## 0.01401977 0.01426281

summary(mod.OD, dispersion =
Dispersion)$coefficients[,"Std. Error"]

## (Intercept) X
## 0.02244896 0.02283812



Use a different distribution I
The Negative Binomial distribution assumes that there is
over-dispersion

We fit the model in almost the same way, but with the glm.nb()
function in the MASSpackage

mod.NB <- MASS::glm.nb(Y2 ~ X)

round(summary(mod.NB)$coefficients, 2)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.63 0.02 73.06 0.00
## X 0.06 0.02 2.49 0.01

There is an extra parameters, θ, is an estimate of the amount of
overdispersion (lower = more overdispersion)



Use a different distribution: long version

Our model is log(µi) =
∑

j Xijβj . But we could add a random term,
so it becomes log(µi) =

∑
j Xijβj + εi

If we use εi ∼ N(0, σ2) this is like a regression

I need a Generalised Linear Mixed Model to estimate it

We could also use eεi ∼ χ2
ν . This is the same as assuming a

negative binomial distribution.



Back to Himmicanes

Is there evidence of over-dispersion?

What happens if you correct it?

I either using a neative binomial distribution or correcting the
likelihood



More model Checking: Residuals

We can also calculate residuals

mod.NBndam <- MASS::glm.nb(alldeaths ~ Gender+NDAM, data=Data)
resid(mod.NBndam)[1:5]

## 1 2 3 4 5
## -0.8795870 -0.5884542 -0.4389292 -1.1047473 -1.8174212

# plot on log scale
plot(log(fitted(mod.NBndam)), resid(mod.NBndam))

Any evidence for curvature? Or other effects?

Suggestions for improving the model?



Model Comparison

We have a specific hypothesis: Gender affects number of deaths.

We can ask specifically about this question by hypothesis testing:
does the model with Gender fit better than the model without
Gender?



Model Comparison

Your turn: test this hypothesis (see Weeks 10 & 12 for how to do
this)



Summary

We have seen a log-linear model, using a Poisson distribution

I use with counts

Interpret the parameters on the log scale

I multiplicative on the scale of the data

Easy to fit the model

Overdispersion is a common problem

I can now solve in 2 ways


