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Administration Matters

I Reference Group
I Blackboard



Simple modelling

Today we will start modelling

I start to think about variability



Our Problem

What proportion of the earth is land?

If we have a globe, how can we estimate what proportion in land
and what proportion sea?

(plant cover is a real example of this problem)



Sampling The Earth

Toss the globe around When you catch it. put your finger on a
point, and say whether it lands on the land or sea Then toss it to
someone else

We will record the number of times we get Land or Sea, and use
this as an estimate of the proportion of the globe that is land



Resampling The Earth in your heads

In a moment we will do the same exercise again, but first I want you
to think about what numbers you might get.

If we did this exercise in 10 classes, what values do you think we
would get? Guess at some possible values

e.g. if we had 3 “earths” out of 12, we might imagine getting 3, 6,
3, 2, 1, . . . ., 9



Resampling The Earth

Toss the globe around When you catch it. put your finger on a
point, and say whether it lands on the land or sea Then toss it to
someone else



Resampling The Earth On the Computer

Now we will simulate the resampling



The Model I

Each observation is a sample from the real world

I “Bernoulli trial”

We observe N trials, of which n are land, and (N − n) are water



The Model II

We can assume that each time we look at whether the sampling is
“land” or “sea”, there is a probability that it is “land”

I probability constant
I each trial is independent

If we know the probability we can simulate this



The Simulation

R has a function rbinom(). We can use it like this:

prob <- 0.4
sim <- rbinom(10, 1, prob)
sim

## [1] 0 0 1 1 0 0 0 0 1 1

We can interpret 1 as Land and 0 as Sea.



The Simulation Function I

We will build the function: first a function that returns 0s or 1s

simGlobe <- function(probability=0.5, NTrials=10) {
sim <- rbinom(NTrials, 1, probability)
return(sim)

}
simGlobe(probability = 0.4, NTrials = 5)

## [1] 0 0 1 0 1



The Simulation Function II

Next, return Land or Sea

simGlobe <- function(probability=0.5, NTrials=10) {
sim <- rbinom(NTrials, 1, probability)
Res <- c("Sea", "Land")[1+sim]
return(Res)

}
simGlobe(probability = 0.4, NTrials = 5)

## [1] "Land" "Land" "Land" "Sea" "Land"



The Simulation Function III

Count the number of Land and Sea

simGlobe <- function(probability=0.5, NTrials=10) {
sim <- rbinom(NTrials, 1, probability)
Res <- c("Sea", "Land")[1+sim]
return(table(Res))

}
# Count number of times the simulation returns "Land"
simGlobe(probability = 0.4, NTrials = 5)

## Res
## Land Sea
## 1 4



Repeating Simulations

We can repeat a function several times:

replicate(3, simGlobe(probability = 0.4, NTrials = 20))

##
## Res [,1] [,2] [,3]
## Land 9 6 8
## Sea 11 14 12



What to do

Use the simGlobe() function to simulate getting more data

I use the same NTrials as we used
I decide on a “good” value of prob

Compare your simulations with your guesses, and with what we
actually got

(try the hist() function to plot the data)



Different Probabilities

Now we have some idea about the variation in the results we could
get from one parameter, what if there is another parameter?



Different Probabilities

Simulate the data with a value of probability that is 0.2 higher

par(mfrow=c(1,2))
hist(replicate(3, simGlobe(probability = 0.4, NTrials = 20)), xlim=c(0,20))
hist(replicate(3, simGlobe(probability = 0.5, NTrials = 20)), xlim=c(0,20))

Histogram of replicate(3, simGlobe(probability = 0.4, NTrials = 20))

replicate(3, simGlobe(probability = 0.4, NTrials = 20))
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Histogram of replicate(3, simGlobe(probability = 0.5, NTrials = 20))

replicate(3, simGlobe(probability = 0.5, NTrials = 20))
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The Inference Problem

We have seen that even with one probability, we can get a range of
observations. And we can get the same observation with a range of
probabilities

So how do we find a good probability?

How do we know what are reasonable probabilities?



Likelihood

One way: find the probability that makes the data most likely

n follows a binomial distribution, with an unknown p (the
population-level mean)



Some Maths

If we have 1 trial, the probability of Land is p

If we have 2 trials, we could have Land-Land, Land-Sea, Sea-Land,
Sea-Sea

So

Pr(2Land) = p2

Pr(1Land) = 2p(1− p)
Pr(1Land) = (1− p)2



A Mathematical Shortcut

If we have N trials, and observe r “successes” then the probability
of this is

Pr(n = r |N, p) = N!
r !(N − r)!pr (1− p)N−r

Which has 2 parts. The important part is pr (1− p)N−r which is

psuccesss(1− p)failures



The other part

The other part is

N!
r !(N − r)!

which counts the number of combinations of r successes and N − r
failures

e.g. if N = 3 and r = 1 we have

I success - failure - failure
I failure - success - failure
I failure - failure - success

So 3!
1!(3−1)! = 3



Likelihood

If we know p (the probability of Land), we can calculate the
probability of obtaining the data, given the parameter

I this is called the likelihood

But we don’t know p: this is what we want to estimate



Using the Likelihood
We can calculate the likelihood for different values of p
In R:

NLand <- 4
NSea <- 6
N <- NLand + NSea

dbinom(NLand, N, 0.4)

## [1] 0.2508227

We can also calculate several values:

# seq() creates a sequence of numbers
Probs <- seq(from = 0.1, to = 0.9, length.out = 3)
(lhoods <- dbinom(NLand, size = N, prob = Probs))

## [1] 0.011160261 0.205078125 0.000137781



Finding a Good Likelihood
Your task: calculate the likelihood for the data for different values
of p

plot(Probs, lhoods, type="l")
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Finding the Best Likelihood

From this, can you find the best likelihood?



Terminology

We call p the estimand: this is what we want an estimator of

We will call the estimator p̂


