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Administration Matters

I Reference Group
I Blackboard



The Simulation Function, from yesterday
(changed to avoid a possible error that coud mess things up)

simGlobe <- function(probability=0.5, NTrials=10) {
sim <- rbinom(NTrials, 1, probability)

# this next line changes so the function will return
# zero counts, rather than leave them off

Res <- factor(c("Sea", "Land")[1+sim],
levels = c("Sea", "Land"))

return(table(Res))
}

(reps <- replicate(3, simGlobe(probability = 0.1,
NTrials = 10)))

##
## Res [,1] [,2] [,3]
## Sea 9 8 9
## Land 1 2 1



What to do

Use the simGlobe() function to simulate getting more data

I use the same NTrials as we used
I decide on a “good” value of prob

Compare your simulations with your guesses, and with what we
actually got

Try the hist() function to plot the data:

I you will need to plot only the first rowm so use
hist(reps["Land",]) or hist(reps[2,])



Taking Stock

So far we have seen that there is a range of possible results we
could get from the same parameters

We want to estimate the parameters, so will different parameters
give us different similar results?



Different Probabilities

Now we have some idea about the variation in the results we could
get from one parameter, what if there is another parameter?



Different Probabilities
Simulate data with a probability 0.2 higher, then 0.2 lower

par(mfrow=c(1,3)) # This gives 3 plots in one row
hist(replicate(3, simGlobe(probability = 0.2,

NTrials = 10))["Land",], xlim=c(0,10))
hist(replicate(3, simGlobe(probability = 0.4,

NTrials = 10))["Land",], xlim=c(0,10))
hist(replicate(3, simGlobe(probability = 0.6,

NTrials = 10))["Land",], xlim=c(0,10))

Histogram of replicate(3, simGlobe(probability = 0.2, NTrials = 10))["Land", ]

replicate(3, simGlobe(probability = 0.2, NTrials = 10))["Land", ]
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Histogram of replicate(3, simGlobe(probability = 0.4, NTrials = 10))["Land", ]

replicate(3, simGlobe(probability = 0.4, NTrials = 10))["Land", ]
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Histogram of replicate(3, simGlobe(probability = 0.6, NTrials = 10))["Land", ]

replicate(3, simGlobe(probability = 0.6, NTrials = 10))["Land", ]
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The Inference Problem

We have seen that even with one probability, we can get a range of
observations. And we can get the same observation with a range of
probabilities

So how do we find a good probability?

How do we know what are reasonable probabilities?



The Inference Problem

We have seen that even with one probability, we can get a range of
observations. And we can get the same observation with a range of
probabilities

So how do we find a good probability?

How do we know what are reasonable probabilities?

One way: find the ‘probability‘ that makes the data most likely



What we need to do

Find out how to calculate the probability of the data

Find the maximum value

I this might need some maths, or we can do it numerically, or by
simulation



Some Maths

If we have 1 trial, the probability of Land is p

If we have 2 trials, we could have Land-Land, Land-Sea, Sea-Land,
Sea-Sea

So

Pr(2Land) = p2

Pr(1Land) = 2p(1− p)
Pr(1Land) = (1− p)2



The Binomial Distribution

If we have N trials, and observe r “successes” then the probability
of this is

Pr(n = r |N, p) = N!
r !(N − r)!pr (1− p)N−r

Which has 2 parts. The important part is pr (1− p)N−r which is

psuccesss(1− p)failures



The other part

N!
r !(N − r)!

this counts the number of combinations of r successes and N − r
failures

e.g. if N = 3 and r = 1 we have

I success - failure - failure
I failure - success - failure
I failure - failure - success

So 3!
1!(3−1)! = 3



Likelihood

If we know p (the probability of Land), we can calculate the
probability of obtaining the data, given the parameter

I this is called the likelihood

But we don’t know p: this is what we want to estimate



log-Likelihood

It is ofter easier if we use the log-likelihood,
l(p|n = r , N) = log(Pr(n = r |N, p))

(l(p|n = r , N) = log
( N!

r !(N − r)!

)
+ r log p + (N − r) log(1− p)

This is a function of p, so if we ignore constants we have

l(p|n = r , N) = r log p + (N − r) log(1− p) + C



Using the Likelihood
We can calculate the likelihood for different values of p

NLand <- 4; NSea <- 6; N <- NLand + NSea
dbinom(NLand, N, 0.4) # calculate the likelihood

## [1] 0.2508227

dbinom(NLand, N, 0.4, log=TRUE) # the log-likelihood

## [1] -1.383009

We can also calculate several values:

# seq() creates a sequence of numbers
Probs <- seq(from = 0.1, to = 0.9, length.out = 3)
(lhoods <- dbinom(NLand, size = N, prob = Probs))

## [1] 0.011160261 0.205078125 0.000137781



Your task: Finding a Good Likelihood
Calculate the likelihood for the data for different values of p

plot(Probs, lhoods, type="l")
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From this plot, and trying a few values, can find the best likelihood?



The Philosophy

The likelihood is a data generating mechanism: it is a statistical
model

We assume that the data are random, and the parameters (and
model) are fixed

We want to find the parameters which are most likely to give rise to
the data

I we maximise the likelihood



Maximising the likelihood

Poking around and trying values is not the best way to find the
maximum.

Alternatives are:

I analytic: do the maths (works for this problem)
I numerical: use an algorithm thatfinds the maximum
I simulation: simulate the likelihood & find the best value

The maximum of the likelihood is the same as the maximum of the
log-likelihood, so we usually work on the log scale



Maximising the log likelihood for the binomial

We can do this analytically. We want to get find an eqiation for the
slope, then set this to zero. The likeilhood is

l(p|n) = r log(p) + (N − r) log(1− p) + C

and after we differnetiate (to get the slope) we have

dl(p|n)
dp = r

p −
N − r
1− p



In Figures
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Maximising

Set the gradient to 0:

0 = r
p −

N − r
1− p

So

p
1− p = r

N − r

i.e. the odds of success are equal to the ratio of successes to failure.

We can re-arrange to get

p̂ = r
N



So. . .

We have maximised the likelihood to get an estimator of p

p̂ = r
N

In more complicated problems we do the same thing, but sometimes
the maximisation is done numerically (or even through simulation)

But we always use the log-likelihood & ignore the normalising
constants



Terminology

We call p the estimand: this is what we want an estimator of

We will call the estimator p̂

Because we will get p̂ by maximising the likelihood, we call it the
maximum likelihood estimator (MLE).



What happens if we take another sample?

e.g. the second time we sampled the earth, we had 6 Landand 4 Sea



What happens if we take another sample?

Each sample gives us a different p̂

p is fixed, and the data are random, so p̂ is a property of the data

We can sample repeatedly many times, and each time get a
different p̂

The likelihood is the distribution of p̂



More samples: your task

Look at the distribution of possible estimates of p.

I Assume the “true” value is 0.4.
I Simulate the data for 10 trials
I Calculate the maximum likelihood estimator

I if you an do this all in the same function, it is easier

Repeat this many times, and plot a histogram of the estimates



Summary

We have seen that data vary

We can estimate the “best” parameters from the data

Different data will give different “best” parameters, even if the
process is the same



Next Week

Adding confidence!


