
Week 4: The Normal Distribution



Recap

So far we have

I learned about maximising the likelihood
I estimated confidence intervals and standard errors

These are the basic tools we will use to fit and understand our
models



More than one datum

So far we have only used one data point. But what if we have more?

If we make one assumption, the maths is easy



More than one datum: the probability

If data are independent, then

Pr(X1&X2) = Pr(X1)Pr(X2)

So we can multiply the probabilities

In general, then

Pr(X1,X2, ...,Xn) =
n∏

i=1
Pr(Xi)



More than one datum: the likelihood

The log-likelihood for the parameters (θ) given the data is

l(θ|X1,X2, ...,Xn) =
n∑

i=1
log(Pr(Xi |θ))

So we just add the log-likelihoods together

I easier than multiplying!



Punxsutawney Phil & Groundhog Day

Here is some data on whether Punxsutawney Phil predicts another 6
weeks of winter (which he tries to do every Feb 2)

We will look at the average temperature for Feb/March in
Pennsylvania in each year

GDay <- read.csv(file="https://www.math.ntnu.no/emner/ST2304/2019v/Week4/GroundhogDayta.csv")



Winter/Spring Temperatures
These are the mean February/March tempertures

plot(GDay$Year, GDay$Temperature, cex=1, pch=3,
col=c("red", "blue")[1+GDay$Shadow])

abline(h=32, col="hotpink")
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Initial question: is the average temperature > 32F (i.e. freezing)?



The Normal Distribution

f (x |µ, σ2) = 1√
2πσ2

e− (x−µ)2

2σ2



The Normal Distribution: Exercises I

Simulate 100 data points from a normal distribution with the same
mean and standard deviation as the temperature data, using
rnorm()

MeanTemp <- mean(GDay$Temperature)
sdTemp <- sd(GDay$Temperature)
sim.data <- rnorm(5, mean = MeanTemp, sd = sdTemp)
hist(sim.data)
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The Normal Distribution: Exercises II

I Calculate the density data from the distribution for values using
dnorm()
I why is the density different from the probability (hint: the

normal is continuous)

At.data <- seq(min(GDay$Temperature),
max(GDay$Temperature), length=4)

dens.data <- dnorm(At.data, mean = MeanTemp, sd = sdTemp)
plot(At.data, dens.data, type="l")
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The Normal Distribution: Exercises III

I Calculate the cumulative density data from the distribution for
values using pnorm()

cumul.data <- pnorm(At.data, mean = MeanTemp, sd = sdTemp)
plot(At.data, cumul.data, type="l")
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The Normal Distribution: Exercises IV

I Calculate the 2.5th, 25, 50th, 75th, and 97.5th quantiles from
the distribution using qnorm()

Quantiles <- c(0.025, 0.25, 0.5, 0.75, 0.975)
quants.data <- qnorm(Quantiles,

mean = MeanTemp, sd = sdTemp)
plot(Quantiles, quants.data, type="l")
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What is the differnce between pnorm() and qnorm()?



The Normal Distribution: the log likelihood

If we take logs of the density,

f (x |µ, σ2) = 1√
2πσ2

e− (x−µ)2

2σ2

we get this:

l(µ, σ2|x) = −1
2 log(2πσ2)− (x − µ)2

2σ2

The likelihood for a single data point. For µ this is just a quadratic



The Likelihood for µ

The likelihood for n independent samples is the product of each
likelihood:

L(µ, σ|x1, ..., xn) = p(x1|µ, σ)p(x2|µ, σ)...p(xn|µ, σ) =
n∏

i=1
p(xi |µ, σ)

This means that the log-likelihood is the sum of the likelihoods, the
sum of quadratic terms:

log L(µ, σ|x1, ..., xn) =
n∑

i=1
l(xi |µ, σ) = C − 1

2σ2

n∑
i=1

(xi − µ)2

In practice, we can calculate this with dnorm(..., log=TRUE)



Our Task

Estimate the parameters of this distribution

I estimate µ̂ and σ̂2

In practice, µ̂ is more important, because we will be modelling µ as
a function of different effects



Finding the Estimate
We can simulate data and calculate the likelihood for different
values of the mean(we will fix the standard deviation for now)

CalcNormLh <- function(mu, sigma, data) {
lhood <- sum(dnorm(data, mean=mu, sd=sigma, log=TRUE))
lhood

}
Means <- seq(25, 35, length=500)
lhoods <- sapply(Means, CalcNormLh, sigma=sdTemp,

data=GDay$Temperature)
plot(Means, exp(lhoods-max(lhoods)), type="l",

xlab="Temperature", ylab = "log likelihood")
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Plotting Several Curves

You can plot several curves on the same plot by plotting one, and
then using lines() to add another line to the first plot, e.g.

D1 <- rgamma(1e2,60,2); D2 <- rgamma(1e2,65,2)

lhoods1 <- sapply(Means, CalcNormLh, sigma=1, data=D1)
lhoods2 <- sapply(Means, CalcNormLh, sigma=1, data=D2)
plot(Means, exp(lhoods1-max(lhoods1)), type="l")
lines(Means, exp(lhoods2-max(lhoods2)), col=2)
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Different Amounts of Data

Simulate data with the same mean & standard deviation as the
Groundhog Day data and plot the likelihood for

I 10 data points
I 100 data points
I 1000 data points

Fine (approximately!) the maximum likelihood estimate

What happens to the likelihood when you have more data?



The MLE for µ

We could try simulating & finding the best value, or we could try
numerically maximising this. But we can get an analytic solution

(this is one reason why the normal distribution is so nice - the
maths is relatively easy)



The MLE for µ

We can differentiate the log-likelihood w.r.t µ, and set this to zero

0 = 1
2σ2

(
2

n∑
i=1

xi − 2nµ
)

Then re-arrange, and the MLE is

µ̂ =
∑n

i=1 xi
n

The sample mean!



The MLE for σ2

This is usually less important. We are generally not interested in the
standard deviation, but it is a parameter of the distribution, so it
has to be estimated. What we do is differentiate w.r.t σ2, set to
zero, re-arrange, and get

σ̂2 = 1
n

n∑
i=1

(xi − µ̂)2

For details, you can do it yourself or see https://www.statlect.com/
fundamentals-of-statistics/normal-distribution-maximum-likelihood

https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood
https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood


Comments

The estimate µ̂ is just the sample mean, and σ̂2 is just the sample
variance

I the whole distribution can be summarised by these two
statistics

σ̂2 has n as a denominator, not n − 1

I because we assume the MLE for µ̂: using (n-1) is better
because it takes into account the uncertainty



The distribution of µ̂

We can look at the distribution of µ̂, and (for example) estimate
confidence intervals:



The distribution of µ̂
If the data are normally distributed, the distribution of µ̂ is a
t-distribution.

I we can use dt, pt etc.

The parameters:

I mean
I standard error (= standard deviation/sqrtn)
I degrees of freedom (= n − 1)

dt(32, mean(GDay$Temperature), sd(GDay$Temperature)/sqrt(length(GDay$Temperature)),
df=length(GDay$Temperature)-1)

## [1] 0.1690379

If we have enough data, this distribution look like a normal
distribution



Your work

Use pt() to calculate the probability that the mean temperature is
less than 32F

Use qt() to calculate the 95% confidence interval for the mean,
i.e. calculate the 2.5% and 97.5% quantiles

I you can adapt the code for pnorm() and qnorm()



Next: something useful. . .

So far we have been learning about statistical inference and
statisical programming. Now we can start to use this in modelling.

Next, we will start with a simple model, but put it in the context of
maximum likelihood



Predicting the End of Winter

If Punxsutawney Phil sees his shadow, there will be 6 more weeks of
winter

If he is good at predicting winter, we should see lower average
temperatures in the 2 months after the prediction



The Modelling
First, what would we expect if Punxsutawney Phil can predict
winter, and if he cannot
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The Model

The question is about the mean temperature: is there a clear
difference when Phil sees his shadow or not?

So, we have to build a model where there are different mean
temparatures when he does see his shadow, and when he does not.

We can do this in a few ways. For all we assume yi ∼ N(µi , σ
2)

(i.e. the data follow a normal distribution with the same variance)

We also will define a variable Xi : Xi = 1 if Phil saw his shadow (and
hence predicted winter),Xi = 0 if he did not



The Model - First way

µi =
{
β0 if Xi = 0
β1 if Xi = 1
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The Model - Second way

µi =
{
α if Xi = 0
α+ β if Xi = 1

So the difference is β, and this is what we are interested in
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The Model - Third way

µi = α+ βXi

The difference is β (because Xi can only be 0 or 1). This approach
is the easiest to extend to more complex models
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Calculating the Likelihood

The log-likelihood is not too difficult to write down

log L(µi , σ|x1, ..., xn) = C − 1
2σ2

n∑
i=1

(xi − µi)2

where mui is described in the previous slide.

We now have 3 parameters (two for the means, and the standard
deviation). I will not ask you to calculate the likelihood in all 3
dimensions.



Calculate the likelihood for the difference
We can look at the likelihood for the difference, using the MLEs for
the other parameters
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Estimating the Likelihood for the difference
Even if we ignore σ, the likeihood is more complicated. This is a
plot of the likelihood for µ1 and β
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In Practice

There is much more about this in Chapter 3 of A New Stats with R

R has functions to do the hard work that we have been doing

For the t-test we can use t.test(), but we’re going to do
something different.

We can use Model 3 (µi = α+ βXi) directly



In R

R has a function, lm(). We tell R what to use like this:

Winter <- lm(GDay$Temperature ~ GDay$Shadow)
# Neater...
Winter <- lm(Temperature ~ Shadow, data=GDay)

The model is described as Y ~ X

I Y is the response
I X is the explanatory variable (here is is whether Phil sees his

shadow)
I this is over-kill now, but later in the course you will see that it

helps



Estimates and Confidence intervals

We can extract the estimates with coef()

coef(Winter)

## (Intercept) Shadow
## 31.1406780 0.3786877

This gives two estimates: (Intercept) is for α, Shadow is for β

We get confidence intervals with confint()

confint(Winter)



Your Tasks

I what is the estimate of the difference in temperature between
when Phil sees his shadow and when he does not?

I what is the confidence interval?
I how sure can you be about the direction of any differnce? And

how large could a difference be?
I do you think Punxsutawney Phil can predict whether there will

be another 6 weeks of winter?


