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Last Week

Last week we learned about regression: fitting straight lines

(show plot with residuals)



This Week: How good is my model?
Here are some simulated data sets. For all of them I used the the
same errors, but manipulated the data in different ways. For each
one, you should decide

I if you think a straight line would be a good fit to the data, and
I if it is not, can you do something simple to improve the fit?

(for some you cannot, for some you can)
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How good is my model? A Summary

I Model as fit + residuals
I R2: How much variation does the model explain?
I Residual plots

I curvature
I outliers
I heteroscedasticity

I Normal Probability Plots
I Influential Points



Another View of Regression

Model is systematic part + random part

yi = µi +εi

= α + βxi +εi

I Systematic part of model: a straight line
I Random part of model: residual error

All of the models we will see have this general form, but both parts
can be more complicated



Women’s times

Times <- read.csv("https://www.math.ntnu.no/emner/ST2304/2019v/Week5/Times.csv")
WomenMod <- lm(WomenTimes~Year, data=Times)
plot(Times$Year, Times$WomenTimes, lwd=2)
abline(WomenMod, col=2)
segments(Times$Year, fitted(WomenMod), Times$Year, Times$WomenTimes, col="blue", lwd=2)
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How much variation does the model explain?

The total variation is

Var(yi ) = Var(α + βxi ) + Var(εi )
= β2Var(xi ) + σ2

I σ2 is the residual variation

So we can ask how much of the total total variation is explained by
the model

I if it only explains 4% then the model is not good

A poor model might be because it is wrong, or because the data
come from a problem that is just too noisy



The Proportion of variance explained: R2?
We can calculate the proportion of the total variation explained by
the model

R2 = Variance Explained
Total Variance = 1− Residual Variance

Total Variance

After a bit of maths, we get

R2 = 1−
∑

(yi − µi )2∑
(yi − ȳ)2

I
∑

(yi − µi )2 is the residual variance
I squared difference from expected value

I
∑

(yi − ȳ)2 is the total variance
I squared difference from grand mean



How do we calculate R2 in R?

R calculates R2 in a summary, so we can get it from this

R2 <- summary(WomenMod)$r.squared
R2

## [1] 0.6723703

round(100*R2, 1)

## [1] 67.2

I we usually write R2 as a percentage



What is a good R2?

It depends!
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Exercise

Exercise: calculate the R2 for the 8 plots

You will need to read in the data, and fit the models.

x is the same for all y’s except y7

Data <- read.csv("https://www.math.ntnu.no/emner/ST2304/2019v/Week6/SimRegression.csv")
mod1 <- lm(y1 ~ x, data=Data)
mod7 <- lm(y7 ~ x7, data=Data)

summary(lm(y1 ~ x, data=Data))$r.squared

## [1] 0.8708701



Regression Assumptions

Model is systematic part + random part

yi = µi +εi

= α + βxi +εi

I straight line
I errors are independent
I errors have the same variance
I errors are normally distributed
I errors have zero mean

How can these be wrong? (zero mean is forced by the maximum
likelihood)



Regression Assumptions

For data sets 5 - 8, which assumption is wrong?
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How can we check these?

This will get more complicated later

We need some tools!



Residuals

The model is

yi = α + βxi + εi

We can mimic this with the fitted model

yi = α̂ + β̂xi + ei

ei are the residuals

α̂ and β̂ are the parameter estimates: α̂+ β̂xi is the prediction for yi



Residuals

Residuals are estimates of the error

I they should have no structure
I they should be normally distributed

We often use standardised residuals

We also sometimes standardise them:

ti = yi − E (yi )√
var(ri )



Residuals and Fitted Values
We can extract them in R like this:

Women.res <- residuals(WomenMod)
round(Women.res, 2)[1:5]

## 1 2 3 4 5
## 0.36 0.02 0.08 -0.35 0.11

Women.fit <- fitted(WomenMod)
round(Women.fit, 2)[1:5]

## 1 2 3 4 5
## 11.54 11.48 11.42 11.35 11.29

We can stare at them, but it is more useful if we plot them



Residual plots

par(mfrow=c(1,2))
plot(Women.fit, Women.res, main = "Plot against fitted values")
plot(Times$Year, Women.res, main = "Plot against predictor")
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What Residual plots show

Residuals should not have any structure

With them we can see

I curvature
I outliers
I heteroscedasticity (variance changing)



Residual Exercise

Plot the residuals against the fitted values for all 8 plots.

I For which data do they suggest a problem?
I What is the problem?
I Can you think of ways to improve these models?

I no, you haven’t been given the tools yet! So you can be creative



Normal Probability Plots

Residual plots can show some deviant patterns

But they are poor as a test of normality
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Yesterday
Last week we looked at regrssion, yesterday we started to look at
how good the model is

I does it explain a lot of variation?
I are the assumptions reasonable?

Figure 1: The 95% confidence interval suggests Rexthor’s dog could also
be a cat, or possibly a teapot.



Today

I Normal Probability Plots
I Leverage
I What you can do to improve the model



Normal Probability Plots
If we sort the data (smallest to largest), we can plot them against
their expected values, i.e. plot ri against the normal quantile

par(mar=c(4.1,4.1,1,1), lwd=2)
qqnorm(resid(WomenMod), main="", lwd=3, col="lightblue")
qqline(resid(WomenMod))
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Constructing Probability Plots
NormQuants <- qnorm(1:length(Women.res)/

(1+length(Women.res)))
par(mfrow=c(1,3), mar=c(4.1,2.1,3,1), oma=c(0,2,0,0), lwd=2)
plot(Women.res, lwd=3, col="lightblue", main="Residuals", ylab="")
plot(sort(Women.res), lwd=3, col="lightblue", main="Sorted Residuals", ylab="", xlab="Rank")
plot(NormQuants, sort(Women.res), lwd=3, col="lightblue", main="Residuals vs Normal quantiles", ylab="", xlab="Normal Quantiles")
mtext("Residuals", 2, outer=TRUE)

2 4 6 8 10 12 14

−
0.

4
−

0.
2

0.
0

0.
2

Residuals

Index

2 4 6 8 10 12 14

−
0.

4
−

0.
2

0.
0

0.
2

Sorted Residuals

Rank

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

4
−

0.
2

0.
0

0.
2

Residuals vs Normal quantiles

Normal Quantiles

R
es

id
ua

ls



What you can see
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You Turn. . .

I Draw normal probability plots for the 8 data sets. Do any
suggest problems?

I Try to draw normal probability plots that are normal, and then
have outliers, skewness and thick tails
I you will need to simulate data (e.g. with rnorm()), and then

add points, or transform the data



Leverage

This is less well know, but can be a problem.

Let’s look at the residuals for data sets 6 & 7:
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In data set 7 there is an obvious weird point, but the residuals don’t
see it



Influence

Your task

Fit the model with and without the weird point

You can remove the point like this:

DataNotWeird <- SimData[SimData$x7<10,]

Look at the fitted models. How similar are they?

I check the parameter estimates
I plot the fitted lines on the data (with abline())



Influence and Leverage: Cook’s D

We can generalise this idea by asking how much the fitted values for
the other points change if we remove a data point

Di =
∑n

j=1(ŷj − ŷj(−i))2

s2

I ŷj - prediction for full model
I ŷj(−i) - prediction for model with data point i removed
I s2 - residual variance
I for each data point take the difference in the predicted value

for that point between the full model, and the model with that
point removed

I sum the squares, and standardise by the residual variance



What is influential?

Large values of Di mean a large influence

I Di > 1, or 4/n
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Your Turn

Calculate Cook’s D for the different data sets, and plot them
against x. Do you see any influential points?

cooks.distance(WomenMod)[1:5]

## 1 2 3 4 5
## 0.643742510 0.001416355 0.018007524 0.243659099 0.017246109



How good is my model? A Summary

I Model as fit + residuals
I R2: How much variation does the model explain?
I Residual plots

I curvature
I outliers
I heteroscedasticity

I Normal Probability Plots
I Influential Points



How can we improve the model?

First, check the data and model for silly mistakes

I typos are common

Then, ask if if any misfit is a problem

I does it change the conclusions?
I will it change predictions?



Individual Data Points

Is your data point wrong?

I typos?
I real but unique

If it is wrong, correct, if it is right, might want to remove it & see if
that makes a big difference

I if it does, be careful!



Possible Solutions

Transform the covariate

yi = α + βxp
i + εi

e.g.
√

(xi ), x2
i , log(xi ),

Add more terms

I quadratic

yi = α + βxi + γx2
i + εi

More about this later



Transformations

Transform the response

e.g.
√

(xi ), x2
i , log(xi )

yp
i = α + βxi + εi



Box-Cox transformations

General Class of transformations

yi → yp
i

if p = 0, use log(yi )



Using Box-Cox transformations
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Heteroscedasticity

Variance changes with the mean

I Box-Cox can also solve this (or make it worse)
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Box-Cox in R

R has a function to find the best Box-Cox transformation

library(MASS)
x <- 1:50
y <- rnorm(50,0.1*x, 1)^2
boxcox(lm(y ~ x)) # 0.5 is true transformation
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Your Turn
Unfortunately boxcox() needs positive responses, so we can’t use
the data we have already been using. Instead we can create data
from a Gamma distribution with rgamma(). It has two parameters
(after the number of points to simulate):

I Shape: controls skew: the higher, the more symmetrical
I Scale: this controls the mean (mean = shape*scale)

We can create a (bad) model by keeping the shape constant but
letting the scale vary with x:
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Your Turn, in a moment

This is the code for the previous slide:

x <- seq(1,10, length=50)
y1 <- rgamma(length(x), shape=5, scale=x)
y2 <- rgamma(length(x), shape=100, scale=x)
y3 <- rgamma(length(x), shape=5, scale=x^2)
par(mfrow=c(1,3))
plot(x,y2, main="Larger Shape")
plot(x,y1)
plot(x,y3, main="Scale Quadratic")



Really Your Turn

I Look at the curves,
I Regress the y against X
I Check the residuals.
I See if a transformation helps, e.g.

gam.mod <- lm(y1 ~ x)
library(MASS)
boxcox(gam.mod)

I if a transformation is suggested, try it, and check the residuals
again



A Word of Caution

Figure 2: Don’t overinterpret



Summary

We now know how to asses the model fit

I R2 show how much variation the model explains
I Residual plots and Normal Probability Plots can show

curvature, outliers, and varying variance
I Influential Points can be detected using Cook’s D. These may

not be large outliers!
I We should check outliers & other odd points - are they typos?
I We can try to transform the response to get a better model


