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Yesterday: Multiple Regression
We can now write a multiple regression model

yi = α +
p∑

j=1
βjxij + εi

We can fit it in R

lm(Dust ~ GapeSize + BodySize, data=Schey)

We know what a design matrix looks like

X =


1 2.3 3.0
1 4.9 −5.3
1 1.6 −0.7
...

...
...

1 8.4 1.2





Today

I centring and scaling (and understanding a model)
I how to fit a polynomial model



A Question from Yesterday

“Where’s the line?”
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Getting the Line I
The model that was fitted was

yi = α̂ + β̂1xi1 + β̂2xi2 + εi

(xi1 is Body Size, xi2 is Gape Size. The hats on Greek letters show
that we are using the estimates of the parameters)

This code

abline(a = coef(BSModel)["(Intercept)"],
b = coef(BSModel)["BodySize"])

draws the line

yi = α̂ + β̂1xi1



Getting the Line II

As we are plotting against xi1, we have to do something with xi2

yi = α̂ + β̂1xi1 + β̂2xi2



Getting the Line II
A simple remedy is to set it to the mean:

Better.a <- coef(FullModel)["(Intercept)"] +
coef(FullModel)["GapeSize"]*mean(Schey$GapeSize)

plot(Schey$BodySize, Schey$Dust)
abline(a=coef(BSModel)["(Intercept)"],

b = coef(BSModel)["BodySize"])
abline(a=Better.a, b = coef(FullModel)["BodySize"], col=2)
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Mean Centering: getting the line

Another approach is to move the intercept
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Mean Centring: getting the line
In practice this just means subtracting the mean from Body Size:

Schey$BodySize.c <- Schey$BodySize - mean(Schey$BodySize)
plot(Schey$BodySize.c, Schey$Dust, col=2,

yaxt="n", bty="n")
axis(2, pos=0)
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Your task

Schey$BodySize.c <- Schey$BodySize - mean(Schey$BodySize)
Schey$GapeSize.c <- Schey$GapeSize - mean(Schey$GapeSize)

FullModel <- lm(Dust ~ GapeSize + BodySize,
data=Schey)

FullModel.c <- lm(Dust ~ GapeSize.c + BodySize.c,
data=Schey)

Fit the models with the un-centred and centred Body Size and Gape
Size. Look at the parameters (with coef()), and discuss any
differences.

Can you interpret the parameters?



Scaling

I mentioned that we could measure body size in kg:

Schey$BodySize.kg <- Schey$BodySize/1000
mod.kg <- lm(Dust ~ GapeSize + BodySize.kg, data=Schey)

round(coef(mod.kg), 2)

## (Intercept) GapeSize BodySize.kg
## 9.38 10.62 4509.23

The effect of body size is massive!



Discussion

Why is the effect so massive?

How do you interpret the regression coefficients? They say
something about the change in Dust when body size changes, but
can you say what?

I yes, they are the slope, but what do they say biologically?
I can you interpret the slopes in terms of predictions?



Standardisation

As well as centring the predictors, we can standardise them.

Schey$BodySize.s <- (Schey$BodySize - mean(Schey$BodySize))/
sd(Schey$BodySize)

Schey$GapeSize.s <- scale(Schey$GapeSize)

The first does it “by hand”, the second uses an R function. Both do
the same thing



Interpreting the Standardised Model

FullModel.s <- lm(Dust ~ GapeSize.s + BodySize.s,
data=Schey)

round(coef(FullModel.s), 3)

Fit the model with the standardised coefficients

Can you interpret the standardised coefficients?

When might you prefer to use the standardised or un-standardised
models?



Addendum: the models are the same

A quick bit of maths. The standardised model (for one variable) is

yi = α + β
(xi − x̄)

sx
+ εi

where x̄ is the mean of x and sx is the standard deviation of x . We
can expand the brackets and re-arrange to get

yi = α + βxi/sx − βx̄ + εi

But x̄.j is a constant - it does not vary for different y’s, so we have
the same model, but with

α∗ = α−
∑p

j=1
βj
sj

x̄.j and β∗
j = βj

sj



Polynomials
Back to Data Set 8 last week. . .

SimData <- read.csv("https://www.math.ntnu.no/emner/ST2304/2019v/Week6/SimRegression.csv")
plot(SimData$x, SimData$y8, main="Data Set 8")
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A straight line is a bad idea, so we want a curve



Approximating curves

We can approximate any reasonable curves with a Taylor series:

f (x) ≈ β0 +β1(x − x̄) +β2(x − x̄)2 +β3(x − x̄)3 + · · · +βp(x − x̄)p

So we can fit an approximate curve by regressing Y against X , X 2,
x3 etc.

(we don’t have to centre, of course)



Fitting in R

We can simply treat the extra terms as additional variables

linmod <- lm(y8 ~ x, data=SimData)
quadmod <- lm(y8 ~ x + I(x^2), data=SimData)

Your tasks:

I fit the linear and quadratic models
I fit the linear and quadratic models after standardising x

Does the quadratic model fit better? Are the parameters different?
What happens if you add an x3 term?



Plotting a polynomial
Unfortunalely abline() won’t work. Instead we can predict new
data, and plot that:

PredData <- data.frame(x=seq(min(SimData$x),
max(SimData$x), length=50))

PredData$y.quad <- predict(quadmod, newdata = PredData)
plot(SimData$x, SimData$y8, main="Data Set 8")
lines(PredData$x, PredData$y.quad, col=2)
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Today: a summary

I centring and scaling (and understanding a model)

We can now centre and scale models. This can make interpretation
easier

I how to fit a polynomial model

We can fit polyomial model: lm(y ~ x + I(xˆ2))


