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Administration Matters

I Reference Group
I Blackboard



This week

Estimating parameters and Likelihood

I Sampling the earth. What proportion is land?
I resampling the earth

I sampling variation in estimates
I Binomial likelihood
I Estimation: Maximising the likelihood to find the best estimate



Our Problem

What proportion of the earth is land?

If we have a globe, how can we estimate what proportion in land
and what proportion sea?

(plant cover is a real example of this problem)



The strategy

I Get Some data
I Learn about variation in the data

I need a model for the data
I Inference: work out the distribution of estimates

I find the “best” estimate from the distribution

Next week we can use that to decide how confident we are



Get Some Data: Sampling The Earth

Toss the globe around

When you catch it. put your finger on a point, and say whether it
lands on the land or sea

Then toss it to someone else

We will record the number of times we get Land or Sea, and use
this as an estimate of the proportion of the globe that is land



Data Variation: Resampling The Earth in your heads

In a moment we will do the same exercise again, but first I want you
to think about what numbers you might get.

If we did this exercise in 10 classes, what values do you think we
would get? Guess at some possible values

e.g. if we had 3 “earths” out of 12, we might imagine getting 3, 6,
3, 2, 1, . . . ., 9



Data Variation: Resampling The Earth

As before. . .

Toss the globe around

When you catch it. put your finger on a point, and say whether it
lands on the land or sea

Then toss it to someone else



Data Variation: Resampling The Earth On the Computer

Now we will simulate the resampling



Data Variation: The Model I

Each observation is a sample from the real world

I “Bernoulli trial”

We observe N trials, of which n are land, and (N − n) are water



Data Variation: The Model II

We can assume that each time we look at whether the sampling is
“land” or “sea”, there is a probability that it is “land”

I probability constant
I each trial is independent

If we know the probability we can simulate this



Data Variation: The Simulation

R has a function rbinom(). We can use it like this:
prob <- 0.4
sim <- rbinom(10, 1, prob)
sim

## [1] 0 1 1 0 0 1 0 0 0 1

We can interpret 1 as Land and 0 as Sea.



Data Variation: The Simulation Function

We will build the function: first a function that returns 0 or 1 1s ->
Land Count the number of ’Land*s
source("Week2Functions.R")

simGlobe(probability = 0.4, NTrials = 5)

##
## Sea Land
## 5 0

simGlobe(0.4, 5)

##
## Sea Land
## 3 2



Sidenote: passing arguments to R functions
simGlobe(probability = 0.4, NTrials = 5)

##
## Sea Land
## 3 2

simGlobe(0.4, 5)

##
## Sea Land
## 1 4

Three arguments are defined for simGlobe().

If we pass 2 arguments to the function without giving names, R will
use the first as the first argument & the second as the second.

For the third the default will be used

I if there is no default, R will throw an error



Data Variation: Repeating Simulations

We can repeat a function several times:
simGlobe(probability = 0.4, NTrials = 20, nSims = 3)

##
## [,1] [,2] [,3]
## Sea 10 12 13
## Land 10 8 7

(Lands <- simGlobe(0.4, 20, 3)["Land",])

## [1] 5 10 8



Data Variation: What to do
Use the simGlobe() function to simulate getting more data

I use the same NTrials as we used
I decide on a “good” value of the probability

Do 1000 simulations (i.e. set nSims = 3). Compare your simulations
with your guesses, and with what we actually got. You can use
hist():
hist(Lands)
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Data Variation: Different Probabilities

Now we have some idea about the variation in the results we could
get from one parameter, what if there is another parameter?



Data Variation: Different Probabilities

Simulate the data with a value of probability that is 0.2 higher
par(mfrow=c(1,2))
hist(replicate(3, simGlobe(0.4, 20)), xlim=c(0,20))
hist(replicate(3, simGlobe(0.5, 20)), xlim=c(0,20))

Histogram of replicate(3, simGlobe(0.4, 20))
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Data Variation: Recap

We now have some idea about how much variation there could be in
the data.

Even with a fixed parameter, the results could be quite varied

With one data set, a range of parameters are reasonable



Inference: Finding Good Estimates

So how do we find a good estimate of the probability?

How do we know what are reasonable probabilities?



Inference: Likelihood

One way: find the probability that makes the data most likely

We know n follows a binomial distribution, with an unknown p



Inference: Some Maths

If we have 1 trial, the probability of Land is p

If we have 2 trials, we could have Land-Land, Land-Sea, Sea-Land,
Sea-Sea

So

Pr(2Land) = p2

Pr(1Land) = 2p(1− p)
Pr(1Land) = (1− p)2



Inference: A Mathematical Shortcut

If we have N trials, and observe r “successes” then the probability
of this is

Pr(n = r |N, p) = N!
r !(N − r)!pr (1− p)N−r

Which has 2 parts. The important part is pr (1− p)N−r which is

psuccesss(1− p)failures



Inference: The other part

The other part is

N!
r !(N − r)!

which counts the number of combinations of r successes and N − r
failures

e.g. if N = 3 and r = 1 we have

I success - failure - failure
I failure - success - failure
I failure - failure - success

So 3!
1!(3−1)! = 3



Inference: Likelihood

If we know p (the probability of Land), we can calculate the
probability of obtaining the data, given the parameter

I this is called the likelihood

But we don’t know p: this is what we want to estimate



Inference: Using the Likelihood

We can calculate the likelihood for different values of p
NLand <- 4; NSea <- 6; N <- NLand + NSea
dbinom(NLand, N, 0.4) # calculate the likelihood

## [1] 0.2508227

dbinom(NLand, N, 0.4, log=TRUE) # the log-likelihood

## [1] -1.383009

We can also calculate several values:
# seq() creates a sequence of numbers
Probs <- seq(from = 0.1, to = 0.9, length.out = 3)
(lhoods <- dbinom(NLand, size = N, prob = Probs))

## [1] 0.011160261 0.205078125 0.000137781



Inference: Your task, to Find a Good Likelihood

Calculate the likelihood for the data for different values (>3) of p
Probs <- seq(from = 0.1, to = 0.9, length.out = 3)
# NLand=data
lhoods <- dbinom(NLand, size = N, prob = Probs)
plot(Probs, lhoods, type="l")
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From this plot, and trying a few values, can find the best likelihood?



Inference: The Philosophy

The likelihood is a data generating mechanism: it is a statistical
model

We assume that the data are random, and the parameters (and
model) are fixed

We want to find the parameters which are most likely to give rise to
the data

I we maximise the likelihood



Inference: Maximising the likelihood

Poking around and trying values is not the best way to find the
maximum.

Alternatives are:

I analytic: do the maths (works for this problem)
I numerical: use an algorithm that finds the maximum
I simulation: simulate the likelihood & find the best value

The maximum of the likelihood is the same as the maximum of the
log-likelihood, so we usually work on the log scale



Inference: Maximising the log likelihood for the binomial

We can do this analytically. We want to get find an equation for the
slope, then set this to zero.

The likelihood is

l(p|n) = r log(p) + (N − r) log(1− p) + C

and after we differentiate (to get the slope) we have

dl(p|n)
dp = r

p −
N − r
1− p



Inference: In Figures
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Inference: Maximising

Set the gradient to 0:

0 = r
p −

N − r
1− p

So

p
1− p = r

N − r

i.e. the odds of success are equal to the ratio of successes to failure.

We can re-arrange to get

p̂ = r
N



So. . .

We have maximised the likelihood to get an estimator of p

p̂ = r
N

In more complicated problems we do the same thing, but sometimes
the maximisation is done numerically (or even through simulation)

But we always use the log-likelihood & ignore the normalising
constants



Terminology

We call p the estimand: this is what we want an estimator of

We will call the estimator p̂

Because we will get p̂ by maximising the likelihood, we call it the
maximum likelihood estimator (MLE).



Inference: What happens if we take another sample?

e.g. the second time we sampled the earth, we had 6 Land and 4
Sea

Will we get the same estimate?

Would this mean the estimand is different?



Inference: What happens if we take another sample?

Each sample gives us a different p̂

p is fixed, and the data are random, so p̂ is a property of the data

We can sample repeatedly many times, and each time get a
different p̂

The likelihood is the distribution of p̂



More samples: your task

Look at the distribution of possible estimates of p.

I Assume the “true” value is 0.4.
I Simulate the data for 10 trials
I Calculate the maximum likelihood estimator, using the

mleGlobe() function
mleGlobe(NLand=5, NTrials=10)

## [1] 0.5

mleGlobe(NLand=simGlobe(0.5, 10, 3)["Land",], NTrials=10)

## [1] 0.6 0.4 0.7

Repeat this many times, and plot a histogram of the estimates



Feedback

We want to know how well we are doing, and if we can improve
things. So please fill in this form:

https://docs.google.com/forms/d/e/
1FAIpQLSepCvw6pdNC8LMjlHUtqzNvP9uTl3KJOEeSB7l9lb6aqfLh3w/
viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLSepCvw6pdNC8LMjlHUtqzNvP9uTl3KJOEeSB7l9lb6aqfLh3w/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSepCvw6pdNC8LMjlHUtqzNvP9uTl3KJOEeSB7l9lb6aqfLh3w/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSepCvw6pdNC8LMjlHUtqzNvP9uTl3KJOEeSB7l9lb6aqfLh3w/viewform?usp=sf_link


More data

So far we have only looked at one data point. But in reality we may
have several.

e.g. when we sampled the globe, we had - Land 6 times, Sea 7
times, and then - Land 7 times, Sea 6 times

For “real” problems we usually have many more than 1 observation.



More than one datum: the probability

If data are independent, then

Pr(X1&X2) = Pr(X1)Pr(X2)

So we can multiply the probabilities

In general, then

Pr(X1,X2, ...,Xn) =
n∏

i=1
Pr(Xi)



More than one datum: the likelihood

The likelihood for the parameters (θ) given the data is

L(θ|X1,X2, ...,Xn) =
n∏

i=1
Pr(Xi |θ)

So, on the log scale

l(θ|X1,X2, ...,Xn) =
n∑

i=1
log(Pr(Xi |θ))

we just add the log-likelihoods together

I easier than multiplying!



Summary

We have seen that data vary

We can estimate the “best” parameters from the data, using the
likelihood

Different data will give different “best” parameters, even if the
process is the same



Next Week

Summarising the uncertainty in the estimates


