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Can think of all of these processes as linking together. Will cover each of these bits in 
more detail today and explain where maximum likelihood estimation fits in
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Begin with data
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Imagine a group of lions
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Imagine a group of lions
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We want to collect data on the lions. We cannot catch them all.
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In our sample, count number of lions in the pride
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In our sample, count number of lions in the pride
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In our sample, count number of lions in the pride
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In our sample, count number of lions in the pride
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In our sample, count number of lions in the pride
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We want to say something about the population because this is more interesting. We 
don’t want to only describe our sample (sometimes you do, but not often), we will 
have missed some lions in each pride and some whole prides. But we want to give an 
idea of the number of lions in each pride for all lions. Other examples = say 
something about all birds in a wood from sampling 100, say something about all trees 
in a woodland from sampling 50 etc.
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Once we have data, want to choose a model

16



We have our data and have plotted it for 100 prides. We need to find a model that 
can represent how these data were generated. 
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A Poisson distribution fits this characteristics.
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You can see it follows a similar shape to our data too.

19



20



The same process is true for other datasets and models
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This is GENERAL idea
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Now we have a model, need to estimate the parameters of the model
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Back to our data, we have these counts of lions and we have plotted them in a 
histogram
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We have also chosen our model
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We know that this is characterised by a single parameter lambda (mean and the 
variance)
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We want to estimate that parameter. We find the parameter which is most likely to 
give rise to our data
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We want to estimate that parameter. We find the parameter which is most likely to 
give rise to our data
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We use maximum likelihood estimation to get a maximum likelihood estimate of our 
parameter for this dataset
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If you repeat this again with a different sample. 
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You will get a different estimate of the parameter in your model – because the 
likelihood is conditional on the data. 
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We use maximum likelihood estimation to get a maximum likelihood estimate of our 
parameter for this dataset
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We use maximum likelihood estimation to get a maximum likelihood estimate of our 
parameter for this dataset
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Here is the distribution of the estimates of the parameter. Can see out of 1000 
samples, got around 50 about 260 times. 
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The mean is actually the true population level value of lambda
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The mean is actually the true population level value of lambda
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But to get this distribution requires a lot of simulation or many samples – this is rarely 
possible
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We really want a way to get that distribution of possible estimates from a single 
sample
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We really want a way to get that distribution of possible estimates from a single 
sample
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This is where the likelihood and maximum likelihood estimation come in. 
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From a single sample
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We produce a likelihood curve based on that data, we find the probability of getting 
this sample based on different values of the parameter and find the one that makes it 
most likely. Here that is also the mean of our sample. You can see that the estimate is 
closely tied to the data. 
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The actual distribution you would get by taking many samples is NOT the same as the 
one you get from maximum likelihood estimation. This is because when we estimate, 
it is relative to our data, that is the only information we have. So always centred on 
our MLE of the parameter – but tries to represent it from limited information
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So, the final part to consider is uncertainty
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Actually it is influenced by everything else and is therefore really important!
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We are now back to our likelihood curve we can see there is another component to 
this distribution as well as the maximum
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There is also a spread – this helps us to represent uncertainty in our estimate of the 
parameter
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We represent it using confidence intervals
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We represent it using confidence intervals – hopefully this is familiar from last week!
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This was presented last week. Statistic on the x axis (here it would be our lambda) 
and repeated sample on the y axis. The horizontal bars are the confidence intervals 
and the red line is the true population statistic. Can see that not all confidence 
intervals include the truth.
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Definition = 
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Definition = on slide
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Finish off with the link between uncertainty and data
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This is the confidence interval for our data
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This is the confidence interval for our data
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How you interpret the results of maximum likelihood parameter estimation depends 
on your data and question
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How you interpret the results of maximum likelihood parameter estimation depends 
on your data and question
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Summarise the lecture on the schematic
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Summarise the lecture on the schematic
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