Maximum likelihood:
a bit of context




Step back — the bigger picture

From data to maximum likelihood estimation
(and back again):

- Population and sample
- Model choice

- Parameter estimation

- Uncertainty

- Interpretation




Steps of modelling (week 2 recap)

1. Choose a model for your data
2. Get estimates of the parameters
3. Quantify uncertainty in the estimates

4. Interpret the results




Steps of modelling (week 2 recap)

1. Choose a model for your data




Parameter
estimation

Can think of all of these processes as linking together. Will cover each of these bits in
more detail today and explain where maximum likelihood estimation fits in



Parameter
estimation

Begin with data



Data in statistical modelling

Example of lions
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Imagine a group of lions



Data in statistical modelling

Example of lions
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Imagine a group of lions



Data in statistical modelling

All lions

We want to collect data on the lions. We cannot catch them all.



Data in statistical modelling

In our sample, count number of lions in the pride
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Data in statistical modelling

In our sample, count number of lions in the pride
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Count number of
lions in prides
(100 prides here)

In our sample, count number of lions in the pride
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lions in prides
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This becomes
our data

In our sample, count number of lions in the pride
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Count number of
lions in prides
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In our sample, count number of lions in the pride
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Want to say something
about total population of
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We want to say something about the population because this is more interesting. We
don’t want to only describe our sample (sometimes you do, but not often), we will
have missed some lions in each pride and some whole prides. But we want to give an
idea of the number of lions in each pride for all lions. Other examples = say
something about all birds in a wood from sampling 100, say something about all trees
in a woodland from sampling 50 etc.



Parameter
estimation

Once we have data, want to choose a model
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Choosing a model
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We have our data and have plotted it for 100 prides. We need to find a model that
can represent how these data were generated.



Choosing a model
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A Poisson distribution fits this characteristics.



Choosing a model
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You can see it follows a similar shape to our data too.
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Any model

Our example = Poisson distribution




Any model

Our example = Poisson distribution

But works for any model
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E.g. Binomial distribution (land and sea) : \
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The same process is true for other datasets and models



Any model

Our example = Poisson distribution

But works for any model

E.g. Binomial distribution (land and sea)
Linear equation (regression — coming soon)

Almost anything

This is GENERAL idea
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Parameter
estimation

Now we have a model, need to estimate the parameters of the model
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Parameter estimation
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Back to our data, we have these counts of lions and we have plotted them in a
histogram



Parameter estimation

Lion counts
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We have also chosen our model
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Parameter estimation

Parameter = 1

Lion counts
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We know that this is characterised by a single parameter lambda (mean and the
variance)



Parameter estimation

Parameter = 1

Lion counts
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Want to find the value of the
parameter that is most likely to
give rise to our observed data

We want to estimate that parameter. We find the parameter which is most likely to
give rise to our data
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Parameter estimation

Parameter = 1

Lion counts
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We want to estimate that parameter. We find the parameter which is most likely to
give rise to our data



Parameter estimation
3
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We use maximum likelihood estimation to get a maximum likelihood estimate of our
parameter for this dataset



Parameter estimation
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If you repeat this again with a different sample.
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Parameter estimation
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You will get a different estimate of the parameter in your model — because the
likelihood is conditional on the data.



Parameter estimation
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We use maximum likelihood estimation to get a maximum likelihood estimate of our

parameter for this dataset
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Parameter estimation
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MLE of mean number of lions (lambda)

We use maximum likelihood estimation to get a maximum likelihood estimate of our
parameter for this dataset



Distribution of 4

MLE of mean number of lions
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Here is the distribution of the estimates of the parameter. Can see out of 1000
samples, got around 50 about 260 times.
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Distribution of 4

MLE of mean number of lions
A=50

@
(]
[
o
S
=]
9
(5]
S

w“
<)
>
[
c
5]
=]
o
)
o

I

I T I T 1
46 48 50 52 54

MLE of mean number of lions (lambda)

The mean is actually the true population level value of lambda
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Distribution of 4

MLE of mean number of lions
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MLE of mean number of lions (lambda)

The mean is actually the true population level value of lambda
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Distribution of 4
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But to get this distribution requires a lot of simulation or many samples — this is rarely
possible



We really want a way to get that distribution of possible estimates from a single

sample

Parameter estimation from a single sample
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We really want a way to get that distribution of possible estimates from a single

sample

Parameter estimation from a single sample

We need to:

+ represent the distribution of the parameter mathematically

+ and based on our single sample of data
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Parameter estimation from a single sample

We need to:

+ represent the distribution of the parameter mathematically

+ and based on our single sample of data

This is what we use the likelihood to do

This is where the likelihood and maximum likelihood estimation come in.
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Parameter estimation from a single sample
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From a single sample
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Parameter estimation from a single sample
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We produce a likelihood curve based on that data, we find the probability of getting
this sample based on different values of the parameter and find the one that makes it
most likely. Here that is also the mean of our sample. You can see that the estimate is
closely tied to the data.



Parameter estimation from a single sample
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Parameter estimation from a single sample

MLE of mean number of lions 1= mean of the data
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The actual distribution you would get by taking many samples is NOT the same as the
one you get from maximum likelihood estimation. This is because when we estimate,
it is relative to our data, that is the only information we have. So always centred on
our MLE of the parameter — but tries to represent it from limited information



Parameter
estimation

So, the final part to consider is uncertainty
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Parameter
estimation

Actually it is influenced by everything else and is therefore really important!
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Uncertainty

Likelihood
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We are now back to our likelihood curve we can see there is another component to
this distribution as well as the maximum



Uncertainty

Likelihood
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There is also a spread — this helps us to represent uncertainty in our estimate of the
parameter



Uncertainty

How can we
quantify it?

Likelihood
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We represent it using confidence intervals



Uncertainty

How can we
quantify it?

Likelihood

Confidence intervals
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We represent it using confidence intervals — hopefully this is familiar from last week!



Confidence intervals

This was presented last week. Statistic on the x axis (here it would be our lambda)
and repeated sample on the y axis. The horizontal bars are the confidence intervals

and the red line is the true population statistic. Can see that not all confidence
intervals include the truth.
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Confidence intervals

Confidence interval is used to indicate values for the true parameter
that are more likely, given our data

IF you repeated your sampling many times and each time drew a
confidence interval — 95% of the time (on average) the confidence
interval would contain the true parameter value

Definition =
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Confidence intervals

Confidence interval is used to indicate values for the true parameter
that are more likely, given our data

IF you repeated your sampling many times and each time drew a
confidence interval — 95% of the time (on average) the confidence
interval would contain the true parameter value FREQUENTIST IDEA

Definition = on slide
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Parameter

estimation

Finish off with the link between uncertainty and data
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Uncertainty

Likelihood
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This is the confidence interval for our data



Sample size and uncertainty

Likelihood
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Less data =
higher
uncertainty in
our estimates

This is the confidence interval for our data
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Meaning depends on the data and question

How you interpret the results of maximum likelihood parameter estimation depends
on your data and question
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Meaning depends on the data and question:

E.g. MLE of 50 lions and confidence interval of 49 to 52
= very good estimate in terms of uncertainty (only 3 lions variation)
But

= useless if you need to be sure you capture all lions in an area,
one lion still free could be too many

How you interpret the results of maximum likelihood parameter estimation depends
on your data and question
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Parameter
estimation

Summarise the lecture on the schematic
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Population and
sample

Parameter
estimation

Summarise the lecture on the schematic
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Match to data and question

Population and
sample

Parameter
estimation

Summarise the lecture on the schematic
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Match to data and question Need to

represent whole
distribution of
parameter —
use likelihood

Population and
sample

Parameter
estimation

Summarise the lecture on the schematic
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Match to data and question Need to

represent whole
distribution of
parameter —
use likelihood

Population and
sample

Parameter
estimation

Impacted by
everything! Quantify
with confidence
intervals from
parameter distribution
(likelihood curve)

Summarise the lecture on the schematic
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Match to data and question Need to

represent whole
distribution of
parameter —
use likelihood

Population and
sample

Parameter
estimation

Impacted by
everything! Quantify
with confidence

intervals from
parameter distribution Interpret based on
(likelihood curve) question and data

Summarise the lecture on the schematic
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EXERCISE TASK

On your table write in your own words:

“What maximum likelihood estimation is and why we use
it in statistical modelling”

ASK any questions!!!
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