Linear regression:
Part 2
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What are linear models and linear regression?
How do we fit these models?

Using Im() in R



Lecture Outline

A bit more on fitting

Adding uncertainty
Interpretation of results

How do the results fit in the scientific process?



Lecture Outline

A bit more on fitting
- EX1: Fit regression for 100m times
Adding uncertainty

- EX2: Calculate confidence intervals

Interpretation of results
- EXS: Interpret the results
Prediction

- EX4: Prediction
- EX5: Discuss further steps/good models



A bit more on
fitting



What the likelihood looks like

This is the log-likelihood for a linear regression:
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What the likelihood looks like

This is the log-likelihood for a linear regression:
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What the likelihood looks like

This is the log-likelihood for a linear regression:

I 2
n 2 : - — (a0 + Fx;
l(ylx; a; ﬁ, 0-2) = —Elog 0-2 — (yl (20-2 ﬁ l))
i=1

Our parameters

The explanatory variable



What the likelihood looks like

This is the log-likelihood for a linear regression:

L(y|x,o,,07) = ——loga _ z i — (a + ,[)’xl))

Our parameters
The explanatory variable

The response variable (our observed data)



What the likelihood looks like

This is the log-likelihood for a linear regression:

L(y|x,o,,07) = ——loga _ z i — (a + ,[)’xl))

Our parameters
The explanatory variable
The response variable (our observed data)

The sample size



What the likelihood looks like

This is the log-likelihood for a linear regression:

L(y|x, o, ,0%) = ——loga —

z (yl — (“ + :Bxl))

This is the log-likelihood for a normal distribution:
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What the likelihood looks like

This is the log-likelihood for a linear regression:

L(y|x, o, ,0%) = ——loga —

z (yl — (“ + :Bxl))

This is the log-likelihood for a normal distribution:

n 2

n (Vi — i)

l()’lﬂ,az)=—§10g02— #
i=1

Identical except:

pi = (o + fx;)



What the likelihood looks like

This is the log-likelihood for a linear regression:

z (yl — (“ + lel))

L(y|x, o, ,0%) = ——loga —

This is the log-likelihood for a normal distribution:

n 2

n (Vi — i)

l()’lﬂ,az)=—§10g02— #
i=1

Identical except:
u; = (« + fx;) to get the mean for the normal distribution we use the linear
equation



What the likelihood looks like

This is the log-likelihood for a linear regression:

z (yl _ (“ + :Bxl))

L(y|x, o, ,0%) = ——log

This is the log-likelihood for a normal distribution:

n 2

n (Vi — i)

l()’lﬂ,az)=—§10g02— #
i=1

This part is the same as summing the squares (yesterday)



Data for today

Winning Olympic 100m times
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Reminder! Fitting a linear regression in R

Arguments of Im():

Im(formula, data)
formula=Y ~ X

data = your data

Y is the response variable
X is the explanatory variable



Exercise 1: Fit regression to 100m times

Part E of exercise module.

Some groups will run a regression on the women'’s times, the others will do
one on the men’s times (ONLY DO ONE)



Times (s)

108 110 112 114 116 118
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Women

T T T T T 1
1950 1960 1970 1980 1990 2000

Year

(Intercept) Year
42.19 -0.016

Times (s)
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Men
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(Intercept) Year

28.85 -0.0095



Adding
uncertainty/
confidence



Part F

Some theory and practice



> confint(RegressionModel)

2.5 % 97.5 %

(Intercept) 45.40271555 66.39426309

Year -0.02855252 -0.01792446
Lower Upper

bound bound



Summary Part F

> confint(RegressionModel)

2.5 % 97.5 %
(Intercept) 45.40271555 66.39426309
Year -0.02855252 -0.01792446
Lower Upper
bound bound

If you were to repeat this many many times, 95% of the time (on average)
the confidence interval you draw would contain the true value.




Summary Part F

> confint(RegressionModel)

2.5 % 97.5 %
(Intercept) 45.40271555 66.39426309
Year -0.02855252 -0.01792446
Lower Upper
bound bound

NOT: 95% probability that the true value is within the confidence interval




Summary Part F

> confint(RegressionModel)

2.5 % 97.5 %
(Intercept) 45.40271555 66.39426309
Year -0.02855252 -0.01792446
Lower Upper
bound bound

NOT: 95% probability that the true value is within the confidence interval
|S: the range of values that are more plausible to be the true value

|S: width says how uncertain we are (wider = less certain)
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Interpretation of
results



Exercise 3: Interpret your results.

Part G

Practice interpreting the results



Summary Part G

Which bit do we care about?

o | Maximum likelihood estimates:
T oo (Intercept) Year
e 42.19 -0.016
S ‘ e Confidence intervals:
l —_— 25% 97.5 %

1950 1960 1970Y 1980 1990 2000 (Intercept) 2919 5519
Year -0.02 -0.009



Summary Part G

Which bit do we care about?

Times (s)
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(Intercept)
42.19

Maximum likelihood estimates:

Year
-0.016

N\ Confidence intervals:
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Year

Year

-0.02 -0.009




Summary Part G

Which bit do we care about?

Times (s)

106 108 110 112 114 116 118

|

|

l

|

|

|

Maximum likelihood estimates:

(Intercept) Year
42.19 -0.016

N\ Confidence intervals:

1950 1960 1970 1980 1990 2000

Year

25%  975%
(Intercept) 29.19 55.19

| Year -0.02 -0.009 |




Exercise 3: Present results

5 minutes to update your results

Turn to same row on opposite side and tell them your result

Is it different for men and women?



Finish part G



Why predict?
Fill in values within our data

Predict new values e.g. climate change



Uncertainty in prediction
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Uncertainty in prediction

Winning Olympic 100m times
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Uncertainty in prediction

Winning Olympic 100m times
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Time (s)

Uncertainty in prediction

Winning Olympic 100m times
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Prediction interval
takes into account
variation around the
line as well as
uncertainty in the
line itself!



Uncertainty in prediction

Winning Olympic 100m times
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Part H



Feedback on further directions



Summary of today’s results

Both men’s and women’s 100m winning Olympic times
are decreasing over time

Women by 0.016 seconds/year
Men by 0.01 seconds/year

We are unlikely to have seen the results if there was
no trend (0 not in Cls)

Other questions: How will times change in the future?
Does this pattern happen outside of the Olympics? Are
all humans getting faster? Is speed increase
influenced by temperature?



Lecture Summary

A bit more on fitting

Adding uncertainty

Interpretation of results

Prediction
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Lecture Summary

A bit more on fitting
Tried for a real example

Adding uncertainty

We add uncertainty to represent taking a sample many
times

Interpretation of results
We can translate a § into change in Y with X (back into
biological units) — make conclusion about relationship

Prediction



Lecture Summary

A bit more on fitting
Tried for a real example

Adding uncertainty
We add uncertainty to represent taking a sample many
times

Interpretation of results
We can translate a § into change in Y with X (back into
biological units) — make conclusion about relationship

Prediction
Can be useful but also need to be careful of going too
far outside of your data



Give us feedback



