
Multiple Regression

Bob O’Hara

This week: Multiple Regression

We will look at

I explaining our dependent variable with more than one
explanatory variable

I how to fit these models in R
I what a design matrix is (this will be helpful later)
I how to fit a polynomial model

More Monsters

More Monsters

In the cellar of the museum in Frankfurt we had a population of
Schey.

These are small creatures that lurk in the dark and eat ancient dust
and stale cobwebs.

Some of us wanted to know more about them, and whether they
could be trained to clean the museum collections.

We caught 100 and measured the amount of dust they could eat in
5 mins, and wanted to explain that by their body size, their gape
size (i.e. how large their mouths are).

The Data

Gape
Size (mm)

9.
5

10
.0

10
.5

4.6 4.8 5.0 5.2 5.4

9.5 10.0 10.5

Body
Size (g)

4.
6

4.
8

5.
0

5.
2

5.
4

104 105 106 107 108 109 110

10
4

10
6

10
8

11
0

Dust
Eaten (g)

Simple regression

Dir <- "https://www.math.ntnu.no/emner/ST2304/2019v/"
File1 <- "Week7/ScheyData.csv"
Schey <- read.csv(paste0(Dir, File1))
plot(Schey, labels=c("Gape\nSize (mm)", "Body\nSize (g)",

"Dust\nEaten (g)"))

What if we have >1 predictor?

We often want to look at the effects of several variables together

I they may all have some effect
I we might be doing an experiment where factors interact
I we might want to model one variable as a polynomial

The model

This is our model for simple regression

yi = α + βxi + εi

How can we extend it to more than one variable?

The obvious model

E (yi) = α + β1x1i + β2x2i

This is a plane

G
ape size (m

m
)

Body size (g)

D
ust eaten (g)

The obvious model
The model for the data is thus

yi = α + β1x1i + β2x2i + εi

The points deviate from the plane

G
ape size (m

m
)

Body size (g)

D
ust eaten (g)

Fitting in R

In R we can just use the same function as we did before.
FullMod <- lm(Dust ~ GapeSize + BodySize, data=Schey)

The only change is in the formula. It was

Y ~ X

now it is

Y ~ X1 + X2

Your Turn I

I first fit the model with each covariate individually (i.e. first
explain dust eaten by gape size, then explain dust eaten by
body size).
I use summary() to look at the parameter estimates and R2.

Write down the regression models (i.e. plug the correct values
into E (yi) = α + β1xi)

I What do the models suggest are the effects on dust eating, and
how well do the variables individually explain the variation in
the response?

Your Turn I: Gape Size

GapeMod <- lm(Dust ~ GapeSize, data=Schey)
summary(GapeMod)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.504179 3.1553839 28.365543 4.790278e-49
GapeSize 3.608754 0.6311464 5.717776 1.168581e-07

summary(GapeMod)$r.square

[1] 0.2501509

So the model is yi = 89.5 + 3.6 x + εi

Your Turn I: Body Size

BodyMod <- lm(Dust ~ BodySize, data=Schey)
summary(BodyMod)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 104.5336017 3.6719402 28.4682203 3.491845e-49
BodySize 0.3000321 0.3668415 0.8178792 4.154103e-01

summary(BodyMod)$r.square

[1] 0.006779503

So the model is yi = 104.5 + 0.3 x + εi

Your Turn I: Individual regressions

Body size seems to have little effect - R2 is 0.68 %. Gape size
seems to be more important, explaining 25 % of the variation.

The effect is positive: changing the gape size by 1 mm increases the
amount of dust eaten by 3.6 g

Your Turn I: Joint regression

I fit a model with both covariates (i.e. explain dust eaten by
both gape size and body size).
I again, use summary() to look at the parameter estimates and

R2.Write down the regression model.
I What does this model suggest are the effects on dust eating,

and how well do the variables together explain the variation in
the response?

I How do these results compare to those from the single
regression models?

Your Turn I: Joint regression

FullMod <- lm(Dust ~ BodySize + GapeSize, data=Schey)
summary(FullMod)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.376014 4.5202646 2.074218 4.070794e-02
BodySize 4.509229 0.2404605 18.752475 5.009431e-34
GapeSize 10.617635 0.4761362 22.299577 5.827119e-40

summary(FullMod)$r.square

[1] 0.8378814

So the model is yi = 9.4 + 4.5 x1i + 10.6 x2i + εi (x1i is Body Size,
x2i is Gape Size)

Your Turn I: Joint regression

The joint model explains much more of the variation - R2 is now
83.8 %. The estiamted coefficients are also much larger.

I the effect of body size has changed from 0.3 to 4.5
I the effect of gape size has changed from 3.6 to 10.6

So, the model is better, and the estimated effects are much larger.

Regression More Generally

yi = α + β1xi1 + β2xi2 + β3xi3 + · · · + βpxip + εi

yi = α +
p∑

j=1
βjxij + εi

I we have p covariates, labelled from j = 1 to p
I we have p covariate effects
I the jth covariate values for the ith individual is xij

Design Matrices

We can write this more compactly. First, we turn the intercept into
a covariate by using a covariate with a value of 1 for every data
point. Then we write all of the covariates in a matrix, X :

X =


1 2.3 3.0
1 4.9 −5.3
1 1.6 −0.7
...

...
...

1 8.4 1.2


So, the first column is the intercept, the second is the first covariate,
and the third is the second covariate.

This is called the Design Matrix: it is helpful for writing down the
model

Writing the Model

Using matrix algebra, the regression model becomes

Y = Xβ + ε

where Y, β and ε are now all vectors of length n, where there are n
data points. X is am n × p matrix.

We will not look at the mathematics in any detail: the point here is
that the model for the effect of covariates can be written in the
design matrix.

Writing the Model

Y = Xβ + ε

is


y1
y2
y3
...

yn

 =


1 2.3 3.0
1 4.9 −5.3
1 1.6 −0.7
...

...
...

1 8.4 1.2




β0
β1
β2
...
βp

 +


ε1
ε2
ε3
...
εn


I β0 is the intercept

The Solution (just so you can see it)

After a bit of matrix algebra, one can find the ML solution:

b = (XT X)−1XT Y

where b is the MLE for β.

In practice:

I you won’t have to calculate this: the computer does it, and
I the computer actually doesn’t use this

Multiple Regression Today
We can now write a multiple regression model

yi = α +
p∑

j=1
βjxij + εi

We can fit it in R

lm(Dust ~ GapeSize + BodySize, data=Schey)

We know what a design matrix looks like

X =


1 2.3 3.0
1 4.9 −5.3
1 1.6 −0.7
...

...
...

1 8.4 1.2



Where’s the line in the regression plot?

9.5 10.0 10.5

10
4

10
5

10
6

10
7

10
8

10
9

11
0

Schey$BodySize

S
ch

ey
$D

us
t

Body Size
Body & Gape

Getting the Line I

The model that was fitted was

yi = α̂ + β̂1xi1 + β̂2xi2 + εi

(xi1 is Body Size, xi2 is Gape Size. The hats on Greek letters show
that we are using the estimates of the parameters)

This code
abline(a = coef(BSModel)["(Intercept)"],

b = coef(BSModel)["BodySize"])

draws the line

yi = α̂ + β̂1xi1

Getting the Line II

As we are plotting against xi1, we have to do something with xi2

yi = α̂ + β̂1xi1 + β̂2xi2

Getting the Line II

A simple remedy is to set it to the mean:
Better.a <- coef(FullModel)["(Intercept)"] +

coef(FullModel)["GapeSize"]*mean(Schey$GapeSize)
plot(Schey$BodySize, Schey$Dust)
abline(a=coef(BSModel)["(Intercept)"],

b = coef(BSModel)["BodySize"])
abline(a=Better.a, b = coef(FullModel)["BodySize"], col=2)

9.5 10.0 10.5

10
4

10
6

10
8

11
0

Schey$BodySize

S
ch

ey
$D

us
t

Mean Centering: getting the line

Another approach is to move the intercept

0 2 4 6 8 10

Schey$BodySize

S
ch

ey
$D

us
t

10
4

10
5

10
6

10
7

10
8

10
9

11
0

0 2 4 6 8 10

Schey$BodySize

S
ch

ey
$D

us
t

10
4

10
5

10
6

10
7

10
8

10
9

11
0

Body Size

D
us

t

Mean Centring: getting the line

In practice this just means subtracting the mean from Body Size:
Schey$BodySize.c <- Schey$BodySize - mean(Schey$BodySize)
plot(Schey$BodySize.c, Schey$Dust, col=2,

yaxt="n", bty="n")
axis(2, pos=0)

−0.5 0.0 0.5

Schey$BodySize.c

S
ch

ey
$D

us
t

10
4

10
5

10
6

10
7

10
8

10
9

11
0

Your task

Schey$BodySize.c <- Schey$BodySize - mean(Schey$BodySize)
Schey$GapeSize.c <- Schey$GapeSize - mean(Schey$GapeSize)

FullModel <- lm(Dust ~ GapeSize + BodySize,
data=Schey)

FullModel.c <- lm(Dust ~ GapeSize.c + BodySize.c,
data=Schey)

Fit the models with the un-centered and centered Body Size and
Gape Size. Look at the parameters (with coef()), and discuss any
differences.

Can you interpret the parameters?

Scaling

I mentioned that we could measure body size in kg:
Schey$BodySize.kg <- Schey$BodySize/1000
mod.kg <- lm(Dust ~ GapeSize + BodySize.kg, data=Schey)

round(coef(mod.kg), 2)

(Intercept) GapeSize BodySize.kg
9.38 10.62 4509.23

The effect of body size is massive!

Discussion

Why is the effect so massive?

How do you interpret the regression coefficients? They say
something about the change in Dust when body size changes, but
can you say what?

I yes, they are the slope, but what do they say biologically?
I can you interpret the slopes in terms of predictions?

Standardisation

As well as centering the predictors, we can standardise them.
Schey$BodySize.s <- (Schey$BodySize - mean(Schey$BodySize))/

sd(Schey$BodySize)
Schey$GapeSize.s <- scale(Schey$GapeSize)

The first does it “by hand”, the second uses an R function. Both do
the same thing

Your task: Centering

I Fit the models with the un-centered and centered Body Size
and Gape Size. Look at the parameters (with coef()), and
discuss any differences.

I Can you interpret the parameters?
Schey$BodySize.c <- Schey$BodySize - mean(Schey$BodySize)
Schey$GapeSize.c <- Schey$GapeSize - mean(Schey$GapeSize)

FullMod <- lm(Dust ~ GapeSize + BodySize,
data=Schey)

FullMod.c <- lm(Dust ~ GapeSize.c + BodySize.c,
data=Schey)

Your task: Centering

coef(FullMod)

(Intercept) GapeSize BodySize
9.376014 10.617635 4.509229

coef(FullMod.c)

(Intercept) GapeSize.c BodySize.c
107.535025 10.617635 4.509229

The slopes (i.e. the effects of body size and gape size) are the same,
but the intercept has changed.

For the centered model, the coefficient is now 107.54, which is close
to the mean of the response, 107.54 g

Standardisation
STOPPED HERE
FullModel.s <- lm(Dust ~ GapeSize.s + BodySize.s,

data=Schey)
round(coef(FullModel.s), 3)

(Intercept) GapeSize.s BodySize.s
107.535 1.857 1.562

I How do you interpret the regression coefficients? They say
something about the change in Dust when body size changes,
but can you say what?

I can you interpret the slopes in terms of predictions?

The slope say that when we change the covariate by 1 unit
(e.g. from 100g to 101g), the response changed by that amount.
This is why the coefficient is so massive when we convert to
kilograms - the coefficient is the difference in dust consumption if
between Schey that have 1kg difference in weight.

In the standardised model, the change is by one standard deviation.
‘So what?’ you may be thinking. The reason to do this is that it can
make different coefficients easier to compare. If we have a random
sample from the population, then standardising everything means
they are on equivalent scales - the variation in the population.

Polynomials
Back to Data Set 8 last week. . .
SimData <- read.csv("https://www.math.ntnu.no/emner/ST2304/2019v/Week6/SimRegression.csv")
plot(SimData$x, SimData$y8, main="Data Set 8")

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Data Set 8

SimData$x

S
im

D
at

a$
y8

A straight line is a bad idea, so we want a curve

Approximating curves

We can approximate any reasonable curves with a Taylor series:

f (x) ≈ β0 +β1(x − x̄) +β2(x − x̄)2 +β3(x − x̄)3 + · · · +βp(x − x̄)p

So we can fit an approximate curve by regressing Y against X , X 2,
x3 etc.

(we don’t have to centre, of course)

Fitting in R

We can simply treat the extra terms as additional variables
linmod <- lm(y8 ~ x, data=SimData)
quadmod <- lm(y8 ~ x + I(x^2), data=SimData)

Your tasks:

I fit the linear and quadratic models
I fit the linear and quadratic models after standardising x

Does the quadratic model fit better? Are the parameters different?
What happens if you add an x3 term?

Plotting a polynomial
Unfortunalely abline() won’t work. Instead we can predict new
data, and plot that:
PredData <- data.frame(x=seq(min(SimData$x),

max(SimData$x), length=50))
PredData$y.quad <- predict(quadmod, newdata = PredData)
plot(SimData$x, SimData$y8, main="Data Set 8")
lines(PredData$x, PredData$y.quad, col=2)

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
5

Data Set 8

SimData$x

S
im

D
at

a$
y8

Polynomial Tasks: Does the quadratic model fit better?

linmod <- lm(y8 ~ x, data=SimData)
quadmod <- lm(y8 ~ x + I(x^2), data=SimData)

summary(linmod)$r.square

[1] 0.590943

summary(quadmod)$r.square

[1] 0.9124822

The R2 for the linear model is 59%, which is fairly good, but the
quadratic model is much better, with an R2 of 91%. We will see the
improvement in a couple of slides’ time, when we look at the plot.

Polynomial Tasks: Are the parameters different?
could also look at summary()
coef(linmod); confint(linmod)

(Intercept) x
0.3632011 1.1201099

2.5 % 97.5 %
(Intercept) 0.08309298 0.6433092
x 0.65862933 1.5815906

coef(quadmod); confint(quadmod)

(Intercept) x I(x^2)
0.9260229 1.1201099 -1.5276592

2.5 % 97.5 %
(Intercept) 0.7247749 1.127271
x 0.8995350 1.340685
I(x^2) -1.9354878 -1.119830

We can see that when we add the quadratic term, the intercept
changes but the linear term is almost the same. However the
confidence intervals change.

But. . .

Polynomial Tasks: Are the parameters different?
SimData$x.uc <- SimData$x - 1
linmod.uc <- lm(y8 ~ x.uc, data=SimData)
quadmod.uc <- lm(y8 ~ x.uc + I(x.uc^2), data=SimData)

could also look at summary()
coef(linmod.uc)

(Intercept) x.uc
1.483311 1.120110

coef(quadmod.uc)

(Intercept) x.uc I(x.uc^2)
0.5184737 -1.9352084 -1.5276592

coef(quadmod)

(Intercept) x I(x^2)
0.9260229 1.1201099 -1.5276592

If we move the intercept, we see that both the intercept and the
linear term change. What this means is that we have to interpret a
polynomial model as a whole. It turns out that the linear term is the
slope of the model at the intercept, so if we change the intercept,
whe change where on the curve the slope is being measured.

Polynomial Tasks: What happens if you add an x3 term?

cubmod <- lm(y8 ~ x + I(x^2) + I(x^3), data=SimData)

summary(quadmod)$r.square

[1] 0.9124822

summary(cubmod)$r.square

[1] 0.9163881

We should look at the full summary, but the interesting bit turns
out to be the R2. Adding the cubic term increases it by 0.4%,
which is basically nothing. The cubic term estimate is -0.32, with a
95% confidence interval of -1.1 to 0.46, so we don’t know what
direction it is going in.

Polynomial Tasks: Plot the curves.

Here’s the code. Hte plot is on the next page
PredData <- data.frame(x=seq(min(SimData$x),

max(SimData$x), length=50))
PredData$y.quad <- predict(quadmod, newdata = PredData)
PredData$y.lin <- predict(linmod, newdata = PredData)
PredData$y.cub <- predict(cubmod, newdata = PredData)

plot(SimData$x, SimData$y8, main="Data Set 8")
lines(PredData$x, PredData$y.lin, col=1)
lines(PredData$x, PredData$y.quad, col=2)
lines(PredData$x, PredData$y.cub, col=3)

Polynomial Tasks: Plot the curves.

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
5

Data Set 8

SimData$x

S
im

D
at

a$
y8

The quadratic and cubic curves are very similar.

The quadratic curve is better, because it is simpler, and adding the
cubic term barley improves the fit. We will find out later how to
make this comparisom more formal.

Today: a summary

I centring and scaling (and understanding a model)

We can now centre and scale models. This can make interpretation
easier

I how to fit a polynomial model

We can fit polyomial model: lm(y ~ x + I(xˆ2))

