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This Week: Categorical Variables, aka Factors

This week we will look at how we can model the effects of
categorical variables on a continuous response,

I e.g. the effects of different varieties of barley on yield.

A lot of the theory was developed for designed experiments

I field trials of plant varieties
I lab studies
I clinical trials



Part A: What is a Categorical Variable?

I Discrete
I not a number

Can you suggest some examples?



Part A: The Data for this week
This data comes from Rothamstead a research station just north of
London (between St Albans ans Luton)

This experiment was started in 1852. Spring barley has been grown
on the site (Hoosfield) continuously, with 4 treatments applied.

Each rectangle is a plot, with a different treatment

http://www.era.rothamsted.ac.uk/Hoos/hoos_open_access_yields


Part A: The Data

Each plot can have one of 4 treatments:

I Control: unfertilised control
I Ferilised: Fertilised with chemical fertiliser (P, K, Mg, N)
I Manure: Fertilised with farmyard manure
I Stopped: Fertilised with farmyard manure up to 1871,

unfertilised since then

The response is yield (t/ha), i.e. how much barley was harvested
from the field:

I a higher yield is obviously better.

Data that are means over about 10 years - treat these as replicates
(= repeat observations).



Part A: Yield Data

The aim is to look at the effects of treatments on yield.
Yields <- read.csv("https://www.math.ntnu.no/emner/ST2304/2020v/Week08/Hoosfield_Yields.csv",

stringsAsFactors = FALSE)

If a treatment improves yield, farmers might want to use it. Similar
trials are used to look at different varieties, at fungicides, pesticides
etc.

A1. Think of, and write down, a biological question you could ask
using these data.



Part B - Analysis

Now we move on to the analysis part. We will want you to pick a
question that is closest to your answer to A1.

I Does fertiliser improve yields compared to the unfertilised
control?

I Does farmyard manure improve yields compared to the
unfertilised control?

I Does fertiliser improve yields more than farmyard manure?
I Did continuing farmyard manure improve yields compared to

stopping in 1871?

All of these questions can be answered with a t-test



Part B - t-tests
We want to compare two groups
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A t-test looks at the difference in the means



Part B - a t-test
We have two groups, A and B, with

yA
i ∼ N(µA, σ2)

yB
j ∼ N(µB, σ2)

And the difference is D = µA − µB . The estimator of the difference
is D̂ = µ̂A − µ̂B = ȳA − ȳB

It turns out that this follows a t-distribution, with variance equal to
the standard error. So

t = ȳA − ȳB√
s2/n

∼ tn−2

where n − 2 is the degrees of freedom



Part B: t-tests in R

First we create vectors for each treatment:
ControlYield <- Yields$yield[Yields$Treatment=="Control"]
FertilisedYield <- Yields$yield[Yields$Treatment=="Fertilised"]
ManureYield <- Yields$yield[Yields$Treatment=="Manure"]
StoppedYield <- Yields$yield[Yields$Treatment=="Stopped"]

Then the t test is
t.test(ControlYield, FertilisedYield, var.equal = TRUE)

µA − µB = D ∼ N(µB, σ2)



Part B - Analysis, your turn

Now we move on to the analysis part. Pick a question that is
closest to your answer to A1.

I Does fertiliser improve yields compared to the unfertilised
control?

I Does farmyard manure improve yields compared to the
unfertilised control?

I Does fertiliser improve yields more than farmyard manure?
I Did continuing farmyard manure improve yields compared to

stopping in 1871?



Part B - First interpretation

B1. What did you find out from your analysis? (what was the main
conclusion)

B2. Find someone who looked at a different question. Share your
results.

B3. Do you think your analysis gave the whole picture of the results
of the experiment?



Part B - solutions



Part B solutions- Does fertiliser improve yields compared
to the unfertilised control?

ControlYield <- Yields$yield[Yields$Treatment=="Control"]
FertilisedYield <- Yields$yield[Yields$Treatment=="Fertilised"]

t.test(ControlYield, FertilisedYield)

##
## Welch Two Sample t-test
##
## data: ControlYield and FertilisedYield
## t = -12.399, df = 21.992, p-value = 2.127e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.289790 -1.633543
## sample estimates:
## mean of x mean of y
## 0.9122222 2.8738889



Part B solutions - Does farmyard manure improve yields
compared to the unfertilised control?

ControlYield <- Yields$yield[Yields$Treatment=="Control"]
ManureYield <- Yields$yield[Yields$Treatment=="Manure"]

t.test(ControlYield, ManureYield)

##
## Welch Two Sample t-test
##
## data: ControlYield and ManureYield
## t = -9.0134, df = 18.024, p-value = 4.26e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.714271 -2.310174
## sample estimates:
## mean of x mean of y
## 0.9122222 3.9244444



Part B solutions - Does fertiliser improve yields more than
farmyard manure?

FertilisedYield <- Yields$yield[Yields$Treatment=="Fertilised"]
ManureYield <- Yields$yield[Yields$Treatment=="Manure"]

t.test(FertilisedYield, ManureYield)

##
## Welch Two Sample t-test
##
## data: FertilisedYield and ManureYield
## t = -2.9117, df = 23.561, p-value = 0.007736
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.7959604 -0.3051507
## sample estimates:
## mean of x mean of y
## 2.873889 3.924444



Part B solutions - Did continuing farmyard manure
improve yields compared to stopping in 1871? manure?

ManureYield <- Yields$yield[Yields$Treatment=="Manure"]
StoppedYield <- Yields$yield[Yields$Treatment=="Stopped"]

t.test(ManureYield, StoppedYield)

##
## Welch Two Sample t-test
##
## data: ManureYield and StoppedYield
## t = 6.0941, df = 23.692, p-value = 2.857e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.456245 2.949310
## sample estimates:
## mean of x mean of y
## 3.924444 1.721667



Part C - t-tests as linear models

C3. Do you think your analysis gave the whole picture of the results
of the experiment?



Part C - t-tests as linear models

Here we have 4 treatments, and comparing them all separately will
be a mess

We may also have more than one type of treatment (e.g. we can
decide to look at applying fertiliser and fungicide in the same
experiment)

I does the effect of fungicide depend on fertiliser?

It is easier to look at everything in one model

I and also improves the estimates



Part C - Developing the models

Because the models get more complicated, we need a general way of
writing them

We will end up writing these models as regression models!

First, three ways to write a t-test



Part C - a t-test, also a One Way ANOVA
We have 2 sets of data
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We want to know if they have different means



Part C - a t-test, also a One Way ANOVA

The analyses all use the same model, which happens to be the same
as we use in a t-test.

It can be written in several ways



Part C - as a t-test

yA
i and yB

j are vectors with the response in them.

They have means µA and µB and a common variance (σ2)

The t-test asks if µA = µB

t.test(yA, yB, var.equal = TRUE)



Part C - as an ANOVA

We have one response, yij , where i says which group yij is in (i.e. A
or B), and j is the j th observation in group i .

yij ∼ N(µ+ αi , σ
2)

There is a common mean, µ and effects αi .

If the αi ’s are different, there is an effect



Part C - as a regression model

We have one response, yi , where i denotes the i th observation. It
has a covariate Xi , where

Xi =
{
0 if Xi = A
1 if Xi = B

then
yi ∼ N(α + βXi , σ

2)

so

yi =
{
α if Xi = A
α + β if Xi = B



Part C - Why the models are the same

For the t-test we have 2 vectors, each with a mean

For the ANOVA we have 1 vector a covariate which says which
mean the data point has

So these are the same thing, each data point has a mean,
µA = µ+ αA or µB = µ+ αB

Now the regression:

yi ∼ N(α + βXi , σ
2)

Group A: µA = α + β × 0 = α

Group B: µB = α + β × 1 = α + β

So, again, we have a different mean for each group. The difference
is β



Part C - A Note about Identifiability

For the ANOVA model we have

µA = µ+ αA

µB = µ+ αB

What if we add a constant, C , to µ, and subtract the same constant
from each αi?

µi = µ+ C + αi − C = µ+ αi

So we need to “fix” the something. One way to do this is to say∑
i niαi = 0, so µ is the grand mean of the data.

Another way is to say αA = 0, so µA = µ and µB = µ+ αB

We will come back to this later



Part C - Fitting t-tests as linear models

We can do a t-test using lm()

xIsB <- as.numeric(x=="B")
mod0 <- lm(y ~ xIsB)
round(summary(mod0)$coefficients,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19 0.19 0.96 0.34
## xIsB 0.76 0.28 2.76 0.01

Here xIsB can be 0 or 1, so this is a regression.



Part C - lm() with categoricals

In general, we would like to write the categorical variables in a more
understandable way (e.g. “Control”, “Fertilised”). If we do this, R
needs to know that these are categorical. It calls them factors
x.Factor <- factor(x)
mod0F <- lm(y ~ x)
round(summary(mod0F)$coefficients,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19 0.19 0.96 0.34
## xB 0.76 0.28 2.76 0.01

Note that the numbers are the same. xB means that there is the
variable x, and the estimate is of the level B.

Internally, R converts the factor to a number. We will explain this
shortly



Part C - Exercise: Fit the models with lm()

For the question you looked at before, use lm() to fit the model
(i.e. to do the t-test).

First you will have to create the correct data frame
ManureStopped <- Yields[Yields$Treatment=="Manure" | Yields$Treatment=="Stopped" ,]
ManureStopped$Treatment <- factor(ManureStopped$Treatment)

modMS <-lm(yield ~ Treatment, data=ManureStopped)
coef(modMS)



Part C - Exercise: Solutions



Part C solutions- Does fertiliser improve yields compared
to the unfertilised control?

ControlFert <- Yields[Yields$Treatment=="Control" | Yields$Treatment=="Fertilised" ,]
ControlFert$Treatment <- factor(ControlFert$Treatment)

modCF <-lm(yield ~ Treatment, data=ControlFert)
coef(modCF)

## (Intercept) TreatmentFertilised
## 0.9122222 1.9616667



Part C solutions- Does fertiliser improve yields compared
to the unfertilised control?

In a plot:
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Part C solutions - Does farmyard manure improve yields
compared to the unfertilised control?

ControlManure <- Yields[Yields$Treatment=="Control" | Yields$Treatment=="Manure" ,]
ControlManure$Treatment <- factor(ControlManure$Treatment)

modCM <-lm(yield ~ Treatment, data=ControlManure)
coef(modCM)

## (Intercept) TreatmentManure
## 0.9122222 3.0122222



Part C solutions - Does fertiliser improve yields more than
farmyard manure?

ManureFert <- Yields[Yields$Treatment=="Manure" | Yields$Treatment=="Fertilised" ,]
ManureFert$Treatment <- factor(ManureFert$Treatment)

modMF <-lm(yield ~ Treatment, data=ManureFert)
coef(modMF)

## (Intercept) TreatmentManure
## 2.873889 1.050556



Part C solutions - Did continuing farmyard manure
improve yields compared to stopping in 1871? manure?

ManureStopped <- Yields[Yields$Treatment=="Manure" | Yields$Treatment=="Stopped" ,]
ManureStopped$Treatment <- factor(ManureStopped$Treatment)

modMS <-lm(yield ~ Treatment, data=ManureStopped)
coef(modMS)

## (Intercept) TreatmentStopped
## 3.924444 -2.202778



Part D - Factors with More than 2 Levels

In Part C we made x into a factor. This is the type of object we use
for categorical variables, because R knows how to use it in lm()

Factors can only take specific values (e.g. Control, Fertilised,
Manure, Stopped). These values are called levels
Yields$Treatment <- factor(Yields$Treatment)
levels(Yields$Treatment)

## [1] "Control" "Fertilised" "Manure" "Stopped"



Part D - Factors in R
R has to convert these to numbers that can used in the analysis, as
0s and 1s
(A.Factor <- rep(c("A", "B"), each=3))

## [1] "A" "A" "A" "B" "B" "B"

model.matrix(~A.Factor)[1:6,]

## (Intercept) A.FactorB
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 1
## 5 1 1
## 6 1 1

A.Factor is in the form we need for the regression, i.e. is 0 or 1.

(Intercept) is also in the form for a regression, where every data
point has a value of 1



Part D - Factors with More than 2 Levels

So far what we have done is to look at a factor with 2 levels

But our data has 4: Control, Ferilised, Manure, Stopped.

How does R deal with this?

Basically, more of the same



Part D - Factors with More than 2 Levels

R creates a multiple regression by writing more columns of 0s and
1s. The trick is to put the numbers in the right place.
(A.Factor3 <- c("A", "B", "C"))

## [1] "A" "B" "C"

model.matrix(~A.Factor3)[1:3,]

## (Intercept) A.Factor3B A.Factor3C
## 1 1 0 0
## 2 1 1 0
## 3 1 0 1

The variables are “Is it B?” and “Is it C?”. If it is not either of these,
it must be A.

The matrix R creates is called the design matrix



Part D - Factors with More than 2 Levels

## [1] "A" "B" "C"

## (Intercept) A.Factor3B A.Factor3C
## 1 1 0 0
## 2 1 1 0
## 3 1 0 1

R picks one level to be the intercept (e.g. A above), and the other
levels are compared to the intercept

Note that a data point can only be A or B or C, so it can’t have a 1
in both the B and C columns



Part D - Categoricals in R

So, we can for the model for the yield data:
mod.Treatments <- lm(yield ~ Treatment, data=Yields)
summary(mod.Treatments)

Yor task: fit the model (with the code above)

Then look at the coefficients and work out what they mean. What
exactly are they estimating?

If you want to look at the design matrix, you can use this code, but
the outout is rather long
model.matrix(~Treatment, data=Yields)



Part D solutions - Categoricals in R

mod.Treatments <- lm(yield ~ Treatment, data=Yields)
round(summary(mod.Treatments)$coefficients, 2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.91 0.20 4.62 0.00
## TreatmentFertilised 1.96 0.28 7.03 0.00
## TreatmentManure 3.01 0.28 10.80 0.00
## TreatmentStopped 0.81 0.28 2.90 0.01



Part D - Categoricals in R: Interpretation

Identifiability was mentioned earlier. With more than 2 levels, it is
still a problem

With 3 levels we have µA, µB, and µC . We can write these as
mu + αi , but the same problem appears: we can add C to mu, and
subtract it from each αi and still get the same mean.

So we have to fix something. There are several eays to do this. R
does it by setting one level to be a baseline, and the others are a
contrast to that level. So the TreatmentFertilised effect is
µFertilised − µControl

Why do it this way? Because it is easier to extend to more
complicated problems



Part E - Models with Two categorical variables

The treatments in the yields experiment changed over time. Some
particularly large changes happened around 1970. So we want to
know if these had an effect. Lter we will ask if the effect changes
with the treatments

This is like a multiple regression, so we can do this:
Yields$After1970 <- factor(Yields$After1970) # Make After1970 a factor
Yields$After1970 <- relevel(Yields$After1970, ref="Before") # Make before the intercept
mod.2way <- lm(yield ~ Treatment + After1970, data=Yields)
summary(mod.2way)

But what does it mean?



Part E - Models with Two categorical variables

Fit the one-way models (i.e. the model with Treatment, and the
model with After 1970), and the two-way model

I Look at the R2 values (from summary()):

I What combination of levels is the Intercept (it is one
Treatment and one After1970 level)?
I hint: what terms are missing from the coefficients?

I Calculate out some of the means
I e.g the Fertilised, before 1970 and the Fertilised After 1970

If you can do this, all other models are built up the same way



Part E - Models with Two categorical variables
First, we can look at the models with one variable:
mod.Treat <- lm(yield ~ Treatment, data=Yields)
mod.After <- lm(yield ~ After1970, data=Yields)
round(coef(mod.Treat), 2)

## (Intercept) TreatmentFertilised TreatmentManure
## 0.91 1.96 3.01
## TreatmentStopped
## 0.81

coef(mod.After)

## (Intercept) After1970Before
## 2.9604167 -0.9035417

Our Intercepts (=reference level) are

I Control for the first model, and
I Before 1970 for the second

For the After9170 model, the treatment levels are ignored, so it is a
mix of all of them



Part E - Models with Two categorical variables

I What combination of levels is the Intercept (it is one
Treatment and one After1970 level)?

The intercept is the Control, Before 1970. So everything else is a
contrast to that.

I Calculate out some of the means
I e.g the Fertilised, before 1970 and the Fertilised After 1970

Fertilised, Before 1970 is made up of the Fertilised effect, and the
Before 1970 effect (which is the intercept)

Fertilised, After 1970 is made up of the Fertilised effect, and the
After 1970 effect (which is the intercept)


