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Administration points



Lecture Outline Part 1

What are GLMs and why do we use them?

- EX1: Non-normal data

Components of a GLM

- EX2: Examples of non-normal data

Maximum likelihood and GLMs

Fitting in R

- EX3: Fit in R



Lecture Outline Part 2

More on the random part

- EX4: Choose a distribution

Practice with Poisson GLM

- EX5: Fit a Poisson GLM in R

Interpretation and GLMS

Checking model fit in GLMS

- EX6: Interpret and check



Reading

Chapter 8 – The New Statistics with R



Part 1



What are GLMs 
and why do we 

use them?



Linear models

Use linear equations to model a continuous response as a function of 
explanatory variables
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Linear models

Use linear equations to model a continuous response as a function of 
explanatory variables

!" = $ + &'" + ("

linear predictor

Systematic part

error

Random part



Linear models

Assumptions:

- straight line (linearity)
- errors are independent

- errors have same variance (homoscedasticity)

- errors are normally distributed and zero mean

- no outliers



• Part  A



Question: How does body weight 
influence survival probability in 
sparrows?

Data: Response = whether the 
bird survived (1), or not (0). 
Explanatory = body weight in 
grams



Question: How does body weight 
influence survival probability in 
sparrows?

Data: Response = whether the 
bird survived (1), or not (0). 
Explanatory = body weight in 
grams

Is a linear model a suitable model for this data?

No 

If not, why not?

The residuals are not normally distributed and it is not 
linear. Also bounded at 0 and 1.

How could you improve it?

Could try transforming but won’t deal with both 
problems – GLM is better!



Question: How does body weight 
influence total length of the 
sparrows?

Data: Response = total length in 
mm. Explanatory = body weight in 
grams



Question: How does body weight 
influence total length of the 
sparrows?

Data: Response = total length in 
mm. Explanatory = body weight in 
grams

Is a linear model a suitable model for this data?

Yes

If not, why not?

Variance seems equal for all fitted values and linearity is 
good

How could you improve it?

seems ok some lower variance at extremes but meets 
assumptions



Question: How does lay date 
influence the number of chicks 
that leave the nest?

Data: Response = number of 
chicks that fledge (leave nest 
alive). Explanatory = lay date (day 
since 1st April)



Question: How does lay date 
influence the number of chicks 
that leave the nest?

Data: Response = number of 
chicks that fledge (leave nest 
alive). Explanatory = lay date (day 
since 1st April)

Is a linear model a suitable model for this data?

No

If not, why not?

Variance increases with increase in fitted value. Bounded at 
zero so shape not quite linear

How could you improve it?

Could try log transformation but probably wont fix 
variance and curve. GLM is better!



What to do with non-normality or non-linearity

Transformation of response?

Different, specialized models?

Or

Generalised linear models



Transformation of response?

Different, specialized models?

Or

Generalised linear models

What to do with non-normality or non-linearity



Introduced in 1972 by Nelder and Wedderburn
https://docs.ufpr.br/~taconeli/CE225/Artigo.pdf

Can address variance and linearity in single model

Response unchanged

Luckily for us, very similar to lm() in R

Basis of many biological models

Key part of modern statistics!

A brief intro to Generalised Linear Models

https://docs.ufpr.br/~taconeli/CE225/Artigo.pdf


Similar to linear models but much more flexible

Generalised linear models

Normally 
distributed 

error

linear regression
ANOVA
ANCOVA
(linear models)



Similar to linear models but much more flexible

Generalised linear models

Normally 
distributed 

error

linear regression
ANOVA
ANCOVA
(linear models)

GLMs

Binomial error

Poisson error

Gamma error



Biological examples

Clutch size

Sex ratio

Population size

Number of plants 
in a quadrat

Two colour morphs



Biological examples

Clutch size

Sex ratio

Population size

Number of plants 
in a quadrat

Two colour morphs

Counts and binary data



• In your groups see if you can think of any other biological 
examples of non-normal data. 

• This can be from your practical classes, just things you are 
interested in or anything else. 

• Try and think of 3 examples in each group and write on white 
boards.

• Share one with the class.



Components of a 
GLM



Three main components of a GLM:

Random part 
- the data (with an assumed distribution e.g. Binomial)

Systematic part
- the model for each data point (linear predictor) e.g. ∑" #$"%"

The link function
- transforms the model (linear) onto scale of data e.g. log(∑" #$"%")

Components of a GLM



Key bits to remember:

Think about the correct distribution for the data

GLM can use Normal, Binomial, Poisson, and Gamma

Different distributions use different link functions

Random



Systematic

Key bits to remember:

This part is the same as a linear model



Link

Key bits to remember:

Different distributions use different link functions

Which you use will alter the interpretation

Connects the Systematic part to the Random data

Describes how the mean depends on the linear predictor

e.g.

! "# = log()
*
+#*,*)



Link

Key bits to remember:

Different distributions use different link functions

Which you use will alter the interpretation

Connects the Systematic part to the Random data

Describes how the mean depends on the linear predictor

e.g.

! "# = log()
*
+#*,*)

Expected value of Yi 
(from Poisson 
distribution)



Link

Key bits to remember:

Different distributions use different link functions

Which you use will alter the interpretation

Connects the Systematic part to the Random data

Describes how the mean depends on the linear predictor

e.g.

! "# = log()
*
+#*,*)

Expected value of Yi 
(from Poisson 
distribution)

log link 



Maximum 
likelihood and 

GLMs



Definitions/synonyms

Explanatory variable = covariate = predictor

Normal distribution = Gaussian distribution

Dispersion = how wide or narrow a distribution is, 
measured by variance or standard deviation



Parameter estimation reminder

Use maximum likelihood to estimate parameters

Likelihood is an equation that represents how the data 
were generated

Formally it is the probability of the data given the 
parameter but also the likelihood of parameter given 
data (annoying – we know!)

!("|#) = likelihood equation for appropriate distribution



General formulation of likelihoods – not in exam

!(#|%) = %# − )(#)
*(+) + -(%, +)

# is the expected value (e.g. the mean)

% is the data

!(#|%) is likelihood of expected value given the data

+ is the variance (dispersion)

*, b, and c are functions – will depend on the distribution used



Fitting GLMs in R



100m times data

Previously fit using lm() now try with glm()

Data are here:

https://www.math.ntnu.no/emner/ST2304/2019v/Week5/
Times.csv

https://www.math.ntnu.no/emner/ST2304/2019v/Week5/Times.csv


100m times data

Fit in R using glm(  )

glm(Y ~ X, data,  family = gaussian(link=identity))  



Fit in R using glm(  )

glm(Y ~ X, data,  family = gaussian(link=identity))  

Exactly like lm()

Systematic part



Fit in R using glm(  )

glm(Y ~ X, data,  family = gaussian(link=identity))  

defines the 
distribution you are 
using for the random 
part of the glm

today we use 
gaussian, aka Normal



Fit in R using glm(  )

glm(Y ~ X, data,  family = gaussian(link=identity))

defines the link 
function to relate the 
systematic part to 
the random part



• Part B



• Results should be the same

• Can see that lm() is a special case of glm()

• But we can do much more with glm() – will start tomorrow!

• confint() on a glm uses profile likelihood



Lecture Outline – Part 1

What are GLMs and why do we use them?
Very flexible models that we can use for non-normal data

Components of a GLM
Random part (data), systematic part (linear predictor), link function

Maximum likelihood and GLMs
General formula for the likelihood that works for all GLMs but exact 
functions depend on distribution of data

Fitting in R
Use glm(), very similar to lm() but with extra arguments for link random 
part and link function



Part 2



Three main components of a GLM:

Random part 
- the data (with an assumed distribution e.g. Binomial)

Systematic part
- the model for each data point (linear predictor) e.g. ∑" #$"%"

The link function
- transforms the model (linear) onto scale of data e.g. log(∑" #$"%")

Components of a GLM



More on the 
Random part



GLM can use Normal, Binomial, Poisson, Gamma, 
and some quasi- distributions

Which distribution do I use?

quasi = almost



GLM can use Normal, Binomial, Poisson, Gamma, 
and some quasi- distributions

Which distribution do I use?



Parameters: mean (!) and variance ("#)

Properties: Continuous, symmetrical around mean, 
single mode

Examples: height, biomass, running times

The Normal Distribution

* Picture from Wikipedia



The Binomial Distribution

Parameters: probability (!)

mean = "! (" = number of successes)
variance = "!(1 − !)

Properties: Gives probability of success from two 
possible outcomes (bounded between 0 and 1)

Examples: survival, sex ratio, land or sea

* Picture from Wikipedia



The Poisson Distribution

Parameters: mean (!) 
variance = mean

Properties: Successes in time or space (counts), 
discrete, positive

Examples: number of plants, number of eggs, 
population size

* Picture from Wikipedia



• Part C



Question: How does body weight influence survival probability in sparrows?

Data: Response = whether the bird survived (1), or not (0). Explanatory = body 
weight in grams



Question: How does body weight influence survival probability in sparrows?

Data: Response = whether the bird survived (1), or not (0). Explanatory = body 
weight in grams

Binomial



Question: How does body weight influence total length of the sparrows?

Data: Response = total length in mm. Explanatory = body weight in grams



Question: How does body weight influence total length of the sparrows?

Data: Response = total length in mm. Explanatory = body weight in grams

Normal



Question: How does lay date influence the number of chicks that leave the nest?

Data: Response = number of chicks that fledge (leave nest alive). Explanatory = lay 
date (day since 1st April)



Question: How does lay date influence the number of chicks that leave the nest?

Data: Response = number of chicks that fledge (leave nest alive). Explanatory = lay 
date (day since 1st April)

Poisson



Link functions and distributions

Family 
(distribution)

Default link 
function 
(canonical)

Other common 
link functions

Gaussian Identity  (!)
Binomial Logit  (log( '

()')) Probit, cloglog

Poisson Log  (log(!)) Identity



Basics of a 
Poisson GLM in R 
(log-linear model)



Does location of nest influence clutch size?

Phoenix clutch size

Mythical bird. Counted eggs in nests. 

Counted eggs in two places Scotland and Norway.

Want to see if the location of the nest influences the number of 
eggs laid.



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)General likelihood for GLM:

Poisson likelihood: ! / 0 = −/ + 0 log / − log(0!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1

General likelihood for GLM:

Poisson likelihood: ! / 0 = −/ + 0 log / − log(0!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2 and 2 comes from the linear equation 3 + 456

General likelihood for GLM:

Poisson likelihood: ! 2 7 = −2 + 7 log 2 − log(7!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2
)(#) = −34 = −3567 8 = −2

General likelihood for GLM:

Poisson likelihood: ! 2 9 = −2 + 9 log 2 − log(9!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2
)(#) = −34 = −3567 8 = −2
-(%, +) = − log(9!), where 9 = the data we observed, the count

General likelihood for GLM:

Poisson likelihood: ! 2 9 = −2 + 9 log 2 − log(9!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2
)(#) = −34 = −3567 8 = −2
-(%, +) = − log(9!)

General likelihood for GLM:

Poisson likelihood:

Yay, it fits the same format!

! 2 9 = −2 + 9 log 2 − log(9!)



The likelihood

!(#|%) = %# − )(#)
*(+) + -(%, +)

*(+) = 1
# = log 2
)(#) = −34 = −3567 8 = −2
-(%, +) = − log(9!)

General likelihood for GLM:

Poisson likelihood: ! 2 9 = −2 + 9 log 2 − log(9!)

Also – we can see our link function



• Part D





Interpreting



• Continue Part D.



But what do they mean?



Mean for Norge



Difference between mean 
Norge and mean Scotland



But – we need to 
remember the link

These are on log scale!





Use exp() to take the inverse of the link 
function and get predictions on scale of 
Y

For beta>0 need to take exp() of whole 
equation (predicting)



Checking model 
fit with GLMs



Assumptions of a GLM

Assumptions of a GLM:

• Lack of outliers

• Correct distribution used

• Correct link function is used

• Correct variance function is used

• Dispersion parameter is constant

• Independence of y



Checking the model fit

For linear models we used:

Residuals vs fitted plots

Normal Q-Q plots

Cook’s distance

These are easy to interpret – we know what we are looking for

This is not the case for GLMs – non-normal variance!



Checking the model fit

For linear models we used:

Residuals vs fitted plots – equal variance and linearity

Normal Q-Q plots – normality of residuals

Cook’s distance - outliers

These are easy to interpret – we know what we are looking for

This is not the case for GLMs – non-normal variance!



Checking the model fit



Checking the model fit

Need a way to handle non-constant variance

Want to produce plots that are roughly normal

Two ways: Pearson and Deviance residuals (neither is perfect)

Both scale residual by variance (in some way)

Pearson residuals: (" − $%)/(%
Deviance residuals: sgn ,- − . ,- /-

sgn(x) = 1 when x > 0 and -1 when x < 0



Checking the model fit

Need a way to handle non-constant variance

Want to produce plots that are roughly normal

Two ways: Pearson and Deviance residuals (neither is perfect)

Both scale residual by variance (in some way)

Pearson residuals: (" − $%)/(%
Deviance residuals: sgn ,- − . ,- /-

sgn(x) = 1 when x > 0 and -1 when x < 0

Default for 
glm



Checking the model fit

PearsonDeviance



Checking the model fit - summary

These plots are still important (with tweaks):

Residuals vs fitted plots

Normal Q-Q plots

Cook’s distance

Once we have scaled the residuals to account for non-equal 
variance, they should be approximately normal

Outliers still important

Plots still useful even if they look weird



• Part E



makes two plots next to each other

extract the two kinds of residuals

extract fitted values

plot







Lecture Outline – Part 2

More on the Random part
Choose a distribution based on your data

Basics of the Poisson GLM
Uses log link as default and used for count data

Checking model fit with GLMs
Bit more difficult for GLMs but can still use similar tools


