$>$ model1 <- lm(yield \sim Treatment + After1970, data $=$ Yields)
$>\operatorname{coef}($ model1)
(Intercept) TreatmentFertilised
Intercept) TreatmentFertilised
1.5145833
1.9616667
$2.5 \% \quad 97.5 \%$
confint(model1)
(Intercept) $1.1006485 \quad 1.9285182$
$\begin{array}{llll}\text { TreatmentFertilised } & 1.4836959 & 2.4396374\end{array}$
$\begin{array}{lll}\text { TreatmentManure } & 2.5342515 & 3.4901930\end{array}$
TreatmentStopped $\quad 0.33147371 .2874152$
After1970Before -1.2620197 -0.5450636
Here you have the results of a linear model using the Rothamsted data from week's 8 and 9 .

The model has a response of plant yield and explanatory variables of fertiliser treatment and time (before and after 1970). The data have been plotted to the right. The first column shows the effect of treatment and the second column shows the effect of time within each treatment. So, the first column shows pre-1970 only. The second column shows both times.

Using the output from the model above, try and draw the model line (defined by the beta values/coefficient estimates) for each effect.

Hint: think about how many coefficients you have so how many different slopes you expect.

3.0122222

Manure

Stopped

Control

Control ((Time))
Fertiliser ((Time))

Manure ((Time))

Time

Stopped ((Time))

(Intercept)
TreatmentFertilised
TreatmentManure
reatmentStopped
fter1970Before
reatmentFertilised:After197aBefor
 TreatmentStopped:After1970Before
0.19416667
$2.5 \% \quad 97.5 \%$
0.54991531 .3334180
$\begin{array}{ll}0.0859799 & 1.3340201\end{array}$
4.20097995 .3090201 0.12597991 .2340201 $-0.5239621 \quad 0.4356288$ $-1.6960332-0.3389668$ -. $2926999-1.9356334$

Now, you have an interaction model from the same variables. Repeat the exercise from before.

How many lines do you have this time? What has changed?

Fertiliser (pre-1970)

Treatment

Manure

Stopped

Treatment

Control

Fertiliser ((Time))

Manure ((Time))

Stopped ((Time))

Time

Control ((Time))

> model1 <- lm(yield ~ Treatment + After1970, data = Yields)
\(\left.\begin{array}{lrr}>coef(model1) \\
(Intercept) \\

1.5145833\end{array}\right)\)| TreatmentFertilised |
| ---: | ---: | ---: |
| 1.9616667 |

Here you have the results of a linear model using the Rothamsted data from week's 8 and 9 .

The model has a response of plant yield and explanatory variables of fertiliser treatment and time (before and after 1970). The data have been plotted to the right. The first column shows the effect of treatment and the second column shows the effect of time within each treatment. So, the first column shows pre-1970 only. The second column shows both times.

Using the output from the model above, try and draw the model line (defined by the beta values/coefficient estimates) for each effect.

Hint: think about how many coefficients you have so how many different slopes you expect.

Fertiliser (pre-1970)

Manure

Stopped

Control

Control ((Time))
Fertiliser ((Time))

Manure ((Time))

Time

Stopped ((Time))

Control (Time)
$>$ model1 <- lm(yield \sim Treatment + After1970, data = Yields)
$>\operatorname{coef}($ model1)
(Intercept) TreatmentFertilised
1.5145833
confint(model1)
(Intercept)
1.1006485 1.9285182
$\begin{array}{lll}\text { TreatmentFertilised } & 1.4836959 & 2.4396374\end{array}$
$\begin{array}{lll}\text { TreatmentManure } & 2.5342515 & 3.4901930\end{array}$
TreatmentStopped $\quad 0.33147371 .2874152$
After1970Before -1.2620197-0.5450636
Here you have the results of a linear model using the Rothamsted data from week's 8 and 9 .

The model has a response of plant yield and explanatory variables of fertiliser treatment and time (before and after 1970). The data have been plotted to the right. The first column shows the effect of treatment and the second column shows the effect of time within each treatment. So, the first column shows pre-1970 only. The second column shows both times.

Using the output from the model above, try and draw the model line (defined by the beta values/coefficient estimates) for each effect.

Hint: think about how many coefficients you have so how many different slopes you expect.

Fertiliser (pre-1970)

Manure

Stopped

Control

Fertiliser ((Time))

Manure ((Time))

Stopped ((Time))

Control ((Time))

> model1 <- lm(yield ~ Treatment + After1970, data = Yields)
$>\operatorname{coef}($ model1)
(Intercept) TreatmentFertilised
1.5145833
confint(model1)
Intercept) 1.100648
$\begin{array}{lll}1.1006485 & 1.9285182\end{array}$
$\begin{array}{lll}\text { TreatmentFertilised } & 1.4836959 & 2.4396374\end{array}$
$\begin{array}{lll}\text { TreatmentManure } & 2.5342515 & 3.4901930\end{array}$
TreatmentStopped $\quad 0.33147371 .2874152$
After1970Before -1.2620197 -0.5450636
Here you have the results of a linear model using the Rothamsted data from week's 8 and 9 .

The model has a response of plant yield and explanatory variables of fertiliser treatment and time (before and after 1970). The data have been plotted to the right. The first column shows the effect of treatment and the second column shows the effect of time within each treatment. So, the first column shows pre-1970 only. The second column shows both times.

Using the output from the model above, try and draw the model line (defined by the beta values/coefficient estimates) for each effect.

Hint: think about how many coefficients you have so how many different slopes you expect.

Control ((Time))
Control

> model1 <- lm(yield ~ Treatment + After1970, data = Yields)
$>\operatorname{coef}($ model1)
(Intercept) TreatmentFertilised
1.9616667
1.5145833
confint(model1)
(Intercept)
1.1006485 $\quad 1.9285182$

TreatmentFertilised $1.4836959 \quad 2.4396374$
$\begin{array}{lll}\text { TreatmentManure } & 2.5342515 & 3.4901930\end{array}$
TreatmentStopped $\quad 0.33147371 .2874152$
After1970Before -1.2620197 -0.5450636
Here you have the results of a linear model using the Rothamsted data from week's 8 and 9 .

The model has a response of plant yield and explanatory variables of fertiliser treatment and time (before and after 1970). The data have been plotted to the right. The first column shows the effect of treatment and the second column shows the effect of time within each treatment. So, the first column shows pre-1970 only. The second column shows both times.

Using the output from the model above, try and draw the model line (defined by the beta values/coefficient estimates) for each effect.

Hint: think about how many coefficients you have so how many different slopes you expect.

Only one estimate for time - so the same in each group. Similar to when we have continuous variables. The ideas are the same for both.

Fertiliser (pre-1970)

Manure

Stopped

Control

Time

Stopped ((Time))

Control ((Time))

TreatmentManure
fter1970Before reatmentManure:Aft After1970Befo reatmentStope: After1970Be
. 2.5 \% 97.5% 0.54991531 .3334180 2.08597993 .1940201 0.12597991 .2340201 $-0.5239621 \quad 0.4356288$ $-1.6960332-0.3389668$ $-3.2926999-1.9356334$ 0.4843666 - 8726999

Here we have interaction terms, they give us the difference in slope of time from the control effect to all other groups. So, we now have different slopes for time in each level of treatment.

E.g. the effect of time (from after to

 before) in the fertiliser group is -0.044 -(-1.0175)Now, you have an interaction model from the same variables. Repeat the exercise from before.

How many lines do you have this time? What has changed?

Fertiliser ((Time))

