$>$ model1 <- lm(yield \sim Treatment + After1970, data $=$ Yields)
$>\operatorname{coef}($ model1)
(Intercept) TreatmentFertilised
Intercept) TreatmentFertilised
1.5145833
1.9616667
$2.5 \% \quad 97.5 \%$
confint(model1)
(Intercept) $1.1006485 \quad 1.9285182$
$\begin{array}{llll}\text { TreatmentFertilised } & 1.4836959 & 2.4396374\end{array}$
$\begin{array}{lll}\text { TreatmentManure } & 2.5342515 & 3.4901930\end{array}$
TreatmentStopped $\quad 0.33147371 .2874152$
After1970Before -1.2620197 -0.5450636
Here you have the results of a linear model using the Rothamsted data from week's 8 and 9 .

The model has a response of plant yield and explanatory variables of fertiliser treatment and time (before and after 1970). The data have been plotted to the right. The first column shows the effect of treatment and the second column shows the effect of time within each treatment. So, the first column shows pre-1970 only. The second column shows both times.

Using the output from the model above, try and draw the model line (defined by the beta values/coefficient estimates) for each effect.

Hint: think about how many coefficients you have so how many different slopes you expect.

3.0122222

Manure

Stopped

Control

Control ((Time))
Fertiliser ((Time))

Manure ((Time))

Time

Stopped ((Time))

(Intercept)
TreatmentFertilised
TreatmentManure
reatmentStopped
fter1970Before
reatmentFertilised:After197aBefor
 TreatmentStopped:After1970Before
0.19416667
$2.5 \% \quad 97.5 \%$
0.54991531 .3334180
$\begin{array}{ll}0.0859799 & 1.3340201\end{array}$
4.20097995 .3090201 0.12597991 .2340201 $-0.5239621 \quad 0.4356288$ $-1.6960332-0.3389668$ -. $2926999-1.9356334$

Now, you have an interaction model from the same variables. Repeat the exercise from before.

How many lines do you have this time? What has changed?

Fertiliser (pre-1970)

Treatment

Manure

Stopped

Treatment

Control

Fertiliser ((Time))

Manure ((Time))

Stopped ((Time))

Time

Control ((Time))

