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This document contains:

¢ Information and background
e Videos

e Questions and answers

e R code

e Plots and illustrations

Hints and reminders are in bold

Questions appear in blue.  Answers appear in a click down.

Contents of module

e Part A = What are GLMs?

e Part B = Parts of a GLM

e Part C = An example of a linear model as a GLM
e Part D = The likelihood

o Part E = Choosing a distribution

o Part F = Interpretation (phoenix example)

e Part G = Model checking

New R skills
o Using glm() with 1ink and family arguments

Part A: What are GLMs?
This module gives an overview of the new type of models we will be using for the final weeks of this course.

The aims of this week are:



e to give an introduction to Generalised Linear Models

¢ to show how they are different to the linear models we used before

e to let you try fitting some example models

o to discuss how using a Generalised Linear Model changes model checking

It is quite a long module, so do not worry if you don’t get through everything this can be a document you
come back to as you go through the final few weeks of the course.

link

Reminder of the course so far So far in the course you have covered:

e intro to R

o maximum likelihood estimation (estimating parameters and quantifying uncertainty)

 using various forms of linear model (continuous explanatory, categorical explanatory, continuous +
categorical explanatory, interactions)

e model checking

o model selection

o practice of a full analysis

A lot of these topics are very general techniques that can be used for any model. For example, estimating
parameters, quantifying uncertainty, checking a model, and model selection are all general tools that we will
keep using for the rest of this course.

Linear models have been the primary statistical model we have been using to illustrate these general tools.
For the final part of this course, we will move on to another type of statistical model the Generalised
Linear Model. You will learn how to apply what you learned for linear models to this new model type.

Intro to GLMs Generalised Linear Models (GLMs) are similar to the linear models you have been using
so far in the course. This is true both in terms of concepts and (very importantly) in how they are run in R.
But, GLMs are very much more flexible.

Linear models are used to model a continuous response as a function of explanatory variables. GLMs also
model a response as a function of explanatory variables. However, as they are more flexible GLMs can be
used for discrete as well as continuous response variables. They can model non-linear relationships, and
handle cases where model residuals would not be normally distributed.

Actually, all of the models we have used so far could be written as a GLM, but GLMs can also do much more
(see diagram below).


https://ntnu.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=10ae8bb3-2cf2-4d93-b4a7-acfd00e7d256

In particular, GLMs are useful when the assumptions of the linear model are violated.

A quick reminder of the assumptions of a linear model:

o linear relationship between X and Y (linearity)

e each value of Y is independent

o the variance of the residuals is equal for all fitted values (homoscedasticity)
« residuals are normally distributed and have mean of zero

e mno outliers

The most common violations that can be addressed with a GLM are:

e Residuals that are not normally distributed
e Non-linearity
e Unequal variance

While some of these violations could be addressed by transformation of the response to try and improve
linearity or equalise the variance - this is not always possible or preferable. The GLM makes it possible to
account for violations of linearity and variance of residuals in a single model without changing the response.
This is especially useful when you know that the response data will not follow a normal distribution e.g. if
they are binary results or derive from counting. In these cases, different distributions will better represent
the data generation process than the normal distribution used in the linear model.

Is a linear model appropriate? To help you start thinking about violations of linear model assumptions,
below there are three example datasets where a linear model has been fitted.

Each is shown by three plots.

e Plot 1 = the raw data with a straight line fitted.
e Plot 2 = the residuals vs fitted plot for the linear model.



e Plot 3 = the normal QQ plot for the linear model.
For each, answer:
1. If you think the linear model was appropriate.
2. Explain why/why not.
Example 1: Sparrow survival
Question: How does body weight influence survival probability in sparrows?

Data: Response = whether the bird survived (1), or not (0). Explanatory = body weight in grams

1: Data 2: residuals/fitted
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Example 2: Length and weight in sparrows
Question: How does body weight influence total length of the sparrows?

Data: Response = total length in mm. Explanatory = body weight in grams



1: Data 2: residuals/fitted
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Example 3: Fledge success in blue tits
Question: How does lay date influence the number of chicks that leave the nest?

Data: Response = number of chicks that fledge (leave nest alive). Explanatory = lay date (day since 1st
April)



1:Data 2:residuals/fitted
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Answers
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Answer in words

Example 1: Is a linear model a suitable model for this data? No. Why not? From the data plot (1) we can
see that the response is not continuous, it is binary (only Os and 1s). The residuals are also not normally
distributed and the relationship between X and Y it is not linear. The variance is also not equal for all fitted
values. Pretty bad on every measure really. Also the data are bounded at 0 and 1, a bird cannot survival
> 100% or < 0%. We could try a transformation but won’t fix both the non-normality AND the lack of
linearity. Using a GLM for this data is more appropriate.

Example 2: Is a linear model a suitable model for this data? Yes, it seems like it. Why? From the data
we can see that both the response and explanatory variable are continuous. In addition, the variance seems
equal for all fitted values and linearity seems good. The residuals are also pretty normally distributed.

Example 3: Is a linear model a suitable model for this data? No. Why not? From the data you might be
able to see that the response is discrete. You cannot have half a bird. We have used some counts before but
these have usually been averages, which can have non-whole values. Here is different and the mean of the
response will be close to 0. This is important, as the mean of count data increases, it can approximate a
normal distribution. But not here. If you look at the diagnostic plots you can see that the variance increases
with increase in fitted values. The data are bounded at zero so shape not quite linear and the residuals do
not follow a normal distribution for low quantiles.

To improve the fit of an LM here you could try a log transformation but probably wont fix the variance and
the non-linearity. A GLM is better!

As you can hopefully see from some of the examples above, A LOT of biological data violates the assumptions
for a linear model. Therefore, a large number of the models that are used in biological research are GLMs.

Some examples of biological data that requires a GLM are:


https://ntnu.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=b8db0807-0c86-4556-8195-acfd00e7d218

o survival data (did it die or not)

» occupancy data (was an organism there or not)
e presence of a particular gene

e counts of species

 reproductive success.

As a result of their wide usage, GLMs are a key part of modern quantitative biology!

See if you can think of any other examples from data you have collected or a topic you have learned about.

Part B: Parts of a GLM

Nothing active to do here - just a lot of new (and important) information.

Hopefully you remember from previous weeks that a linear model can be written as the following equation:

)/i =a+ ﬁXl +&;
where:

e Y is the ith element of variable Y
e « is the intercept of the model line
e [ is the slope of the model line

e X, is the ith element of variable X
e g; is the residual.

This equation can be split into two components: a linear predictor (o + 8X;) and an error term (e;). These
two components can be considered a systematic part and a random part. Like this:

Y, = €i

Thinking of a linear model in this way is a good foundation for looking at GLMs. The same components are
part of a GLM, with one extra.

There are three main components of a GLM:
o The systematic part: the model for each data point (linear predictor) e.g. o + 8X;
e The random part: the data (with an assumed distribution e.g. Binomial)

o The link function: transforms the model (linear) onto scale of data e.g. log(cw + SX;) This one is
new.

We will explain a bit more about each one of these components below.

The systematic part

This part is probably the most familiar, as it is a linear equation and very similar to a linear model. However,
in GLMs the linear predictor does not directly estimate Y. Instead, it is linked to the expected value for Y
through a link function.

E.g.

E(Y;) = link(

where E(Y;) is the expected value of Y; and link is the link function.



or as a matrix where X;; = value i (e.g. 1 or 2 or 3) of X variable j (e.g. 1 or 2 or 6) and /3; = the slope
value for X variable j.

E(Y;) = link(

The random part

This is the part that describes how the errors around the fitted line are distributed. It maps between the
data and the fitted model line.

In linear models, this part has been assumed to be Normally distributed (or Gaussian - both mean the
same just two different words for the distribution). This is where the assumption residuals are normally
distributed with a mean of 0 comes from!

In GLMs the error can still be Normally distributed but it can also have other distributions such as: Binomial,
Poisson, and Gamma. We will look at Binomial and Poisson distributions in this course.

Key things to think about with the random part: you should choose carefully which distribution to
use for the data. It will be determined by characteristics of the data. Different distributions use different link
functions (see below).

This gives the distribution for E(Y;) in the equation above.

The link

The link function is what connects the systematic part of the model to the random part. That is why it is
called a link.

It describes how the mean depends on the linear predictor. This will make more sense when we look at
specific examples.

e.g.

E(Y;) = link(

Different distributions for the random part use different link functions, which change the interpretation of the
coefficients of the model (o and f).

For instance, a Poisson distribution for the random part uses a log link. We will look at an example of this
later in the module and in two weeks time. But in the equation below Y would be Poisson distributed and it
is linked to the linear predictor via the natural log, which is 1log() in R.

E(Y;) =In(

Part C: An example of a linear model as a GLM
Some theory

As you can see in the diagram in Part A, not all GLMs can be linear models, but all linear models can be
GLMs. This means that we can re-write any of the linear models we used in previous weeks as a GLM.



To do this, we need to be able to work out what the systematic part of the model is, what the random part
should be, and what link is used.

For a linear model the answer to this is:

o systematic part = a + X

o random part = a Normal (also called Gaussian) distribution

o link = identity, this means there basically is no link. The systematic part (the linear predictor) maps
directly onto the expected value of Y in this case.

Fitting in R

Now you can have a go at fitting a GLM in R. We will use the 100m Olympic running times data you used in
the regression week, found here: https://www.math.ntnu.no/emner/ST2304,/2019v/Week5/Times.csv

Luckily the code is very similar to 1m() function, but now you use the glm() function.
Video explaining how to fit in R:
link

Use the code below to fit a glm() and an 1m() for WomenTimes. Stick with gaussian family and identity
link.

# code for the glm - update to match your data
glm(Y ~ X, YourData, gaussian( identity))

# lm() ts the same as always

Answers - make sure to try first!

# amport the data
Times <- read.csv("https://www.math.ntnu.no/emner/ST2304/2019v/Week5/Times.csv",
TRUE)

# check the structure and column names

str(Times)
## 'data.frame': 15 obs. of 3 variables:
## $ Year : int 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 ...

## $ WomenTimes: num 11.9 11.5 11.5 11 11.4 ...
## $ MenTimes : num 10.3 10.4 10.5 10.2 10 ...

# code for the glm - save as object
glmTimes <- glm(WomenTimes ~ Year,
Times,
gaussian( identity))

# lm() ts the same as always
ImTimes <- 1lm(WomenTimes ~ Year,
Times)

Look at the results of each model.

Use coef () and confint.lm() or summary(). Note, we have added something to the confint()
function! This is important to get results that are easy to compare. The .1m part just tells R to treat
the model as a linear model. For GLMs with distributions other than Normal, we will just use confint ()
as these are treated a bit differently (R can tell whether the model was run with the glm() or the 1m()
function).

Check your answers


https://www.math.ntnu.no/emner/ST2304/2019v/Week5/Times.csv
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# coefficients
coef (glmTimes)

## (Intercept) Year
## 42.18938095 -0.01573214

coef (1ImTimes)

## (Intercept) Year
## 42.18938095 -0.01573214

# confidence intervals
confint.lm(glmTimes)

#i#t 2.5 % 97.5 %
## (Intercept) 29.18663838 55.192123521
## Year -0.02231223 -0.009152059

confint.lm(1mTimes)

it 2.5 % 97.5 Y,
## (Intercept) 29.18663838 55.192123521
## Year -0.02231223 -0.009152059

# summary
summary (glmTimes)

##

## Call:

## glm(formula = WomenTimes ~ Year, family = gaussian(link = identity),
#it data = Times)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.37388 -0.06327 0.01976 0.09562 0.35683

##

## Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

## (Intercept) 42.189381 6.018761 7.010 9.21e-06 *xx
## Year -0.015732 0.003046 -5.165 0.000182 *x*x*
## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## (Dispersion parameter for gaussian family taken to be 0.04156092)
##

#i Null deviance: 1.64909 on 14 degrees of freedom

## Residual deviance: 0.54029 on 13 degrees of freedom

## AIC: -1.2873

##

## Number of Fisher Scoring iterations: 2

summary (ImTimes)

##

## Call:

## 1m(formula = WomenTimes ~ Year, data = Times)
##

## Residuals:
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## Min 1Q Median 3Q Max
## -0.37388 -0.06327 0.01976 0.09562 0.35683

##

## Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

## (Intercept) 42.189381 6.018761 7.010 9.21e-06 *xx

## Year -0.015732 0.003046 -5.165 0.000182 *x*x*

## ——

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#t

## Residual standard error: 0.2039 on 13 degrees of freedom
## Multiple R-squared: 0.6724, Adjusted R-squared: 0.6472
## F-statistic: 26.68 on 1 and 13 DF, p-value: 0.0001818

Compare the results from the two different models. Are they similar?
Check your answer
They look identical.

Have a look at the output of the summary () function for each model, can you find the differences in the two
tables?

Check your answer
link
Answer as words

While there were no differences in the coeflicient estimates or the confidence intervals or the Coeflicients:
part of the summary table, there were some differences in the summary output.

e The Call for each model is different.

e The residuals become deviance residuals for the GLM.

e The summary parts at the end change, there is no longer and R-squared, residual error, or F-statistics.
Instead there is Null deviance: Residual deviance and the AIC.

In this example, the interpetation of the results is the same as it was in week 5 (Regression). This is because
the link is an identity link. For other links, the interpretation is a bit different. See section F for more
on this.

Part D: The likelihood
Video on the likelihood - not in the exam and more detail in the next two weeks.

link

Part E: Which distribution?

As mentioned earlier in this module, GLMs can be used for response data that is not Normally distributed.
There are many different distributions that can be used for a GLM:

o Normal/Gaussian

o Binomial

e Poisson

o Gamma

o Quasi-distributions (quasi means almost)

11
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Those in bold are the ones we cover in this course.

But how do you know which distribution you should use? This is determined by characteristics of

the response variable, see the table below.

Distribution Characteristics of data Parameters Examples
Normal Continuous, numeric, follows a bell-shaped mean (u) and Height,
curve (roughly) variance (o?) biomass,
running times
Binomial Binary data i.e. yes or no, 0 or 1, success number of trials Survival, sex
or failure (n) and probability ratio, land vs
of success (p) sea
Poisson Integer, positive only, comes from counting, mean (\) Number of
successes in time or space plants, number
of eggs,
number of
dragons

Look back at the examples in Part A:

Example 1: Sparrow survival

Question: How does body weight influence survival probability in sparrows?

Data: Response = whether the bird survived (1), or not (0). Explanatory = body weight in grams
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Example 2: Length and weight in sparrows

Question: How does body weight influence total length of the sparrows?

Data: Response = total length in mm. Explanatory = body weight in grams
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1: Data

Sparrow length (mm)
160 165

155

Weight ()

Example 3: Fledge success in blue tits
Question: How does lay date influence the number of chicks that leave the nest?

Data: Response = number of chicks that fledge (leave nest alive). Explanatory = lay date (day since 1st
April)
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Using the table above to help, which distribution should you use to model each example?
Check your answer

link

Answer as words

Example 1: Binomial as the response is binary (survived or not - survived = success)
Example 2: Normal/Gaussian as the response should be normally distributed

Example 3: Poisson as the response is count data

Link functions and distributions

In Part C of the module, you fitted a GLM to data on Olympic running times. For this you used a Gaussian
(Normal) distribution for the random part and an identity link.

The different distributions that we can use with a GLM have different recommended link functions. Each has
something called a canonical link. This is the link that can be found mathematically in the likelihood and
from the exponential of the density function of the distribution and is the default in R. But other links are
also possible.

To get you started, see the table below for which links can be used with which distributions:

Distribution  Canonical link Other links
Gaussian Identity -

Binomial logit (ln(ﬁ)) Probit, cloglog
Poisson log (natural) (In(p)) Identity

Examples of what results look like for different links and distributions

Hopefully you can see how this is non-linear.

14
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In the next section, you will have a go at fitting and interpretting a Poisson GLM.

Part F: Interpretation

To look at interpretation, we will work through an example together. For this example, we will use a Poisson
GLM. These will be covered in more detail in a couple of weeks time, but this gives some early practice of
how to deal with link functions that aren’t identity.

Here is a video on how the likelihood works for the Poisson GLM. This is an introduction video, more details
in a couple of weeks:

link
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Phoenix data

The data we will use for this is on phoenixes in Norway and Scotland.

The phoenix is a mythical bird. To get the data here, eggs were counted in phoenix nests in two places,
Scotland and Norway.

The aim of the research was:
to see if the location of the nest influences the number of eggs laid

The data on phoenix clutch size can be found at https://www.math.ntnu.no/emner/ST2304/2019v/Week11
/Phoenix.csv. It is a csv with a header.

Import the phoenix data and make a plot of the raw data.

Remember either to use stringsAsFactors = TRUE or check and change the format of the
location column after import. It should be a factor.

Suggestions/hints
Suggestion: plot clutch size on the y-axis and location on the x-axis
Hints:

e remember to change the axis labels
o decide on how to make it pretty e.g. change the colour col of the points, change the pch, use las = 1
to make the y-axis labels horizontal

If you just plot the raw data, you will get a box plot. That is ok. If you want to see the data as points, you
will need to change the Location column into numeric data, just for the plot e.g.

plot(x = as.numeric(PhoenixData$Location))
(remember to include the rest of the code that you need for a plot, the above is just an example)
To make it look pretty, see the answer below.

Answer

# import data
PhoenixData <- read.csv("https://www.math.ntnu.no/emner/ST2304/2019v/Weekl11/Phoenix.csv", stringsAsFact

# check the structure
str (PhoenixData)

16
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## 'data.frame': 100 obs. of 2 variables:
## $ ClutchSize: int 0000201211
## $ Location : Factor w/ 2 levels "Norge","Scotland": 2222222222

# looks ok!

# make the plot

plot(y = PhoenixData$ClutchSize,
% = PhoenixData$Location,
pch = 12, col = "red",
las = 1,
xlab = "Location",
ylab = "Clutch size")
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# This s a box plot

# then try the actual points

plot(y = PhoenixData$ClutchSize,
¥ = as.numeric(PhoenixData$Location),
pch = 12, col = "red",

las = 1,

xlab = "Location",

ylab = "Clutch size",

xaxt = 'n') # this last bit removes the T azis

# draw your own T axris

axis(side = 1, # tells you where to draw azis, 1 =z, 2 =y
at = c(1, 2), # tells R where on the azis to put the labels
labels = c("Norway", "Scotland")) # these are the labels we want

17
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For this model, we will use a Poisson GLM as we have count data (counts of number of eggs). We cannot
have negative eggs or half eggs.

Fit a GLM with a Poisson family and log link to look at whether location of nest influences number of eggs.

Suggestions/hints
Basic code is below, you will need to edit it to match your data AND the distribution you need.
glm(Y ~ X, YourData,

DISTRIBUTION( YOURLINK) )

Check answer

PhoenixModel <- glm(ClutchSize ~ Location, PhoenixData,
poisson( log))

Look at results using coef (). How easy is it to interpret them?

Hint

Remember the link. What are the coefficients actually telling you now?

Usually, for a categorical explanatory variable (as you have here) they would tell you the Y value for the
mean of group 1 and then the difference in mean from group 1 to group 2, again in terms of Y. Is that what
happens here?

Check answer

coef (PhoenixModel)
#it (Intercept) LocationScotland
## 1.098612 -1.272966

This tells you the mean of the Norway group (Intercept) and then the difference in mean to between the
Norway and Scotland group, but these are in units of log(Y"). They are on the log scale (natural log as
this is default in R).

So, this makes it a bit harder to interpret directly.
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The output of the glm() looks very similar to an 1m(). But slightly more has been going on here. In
particular, we have used a link function to link the systematic part of our model to the random part. This
needs to be considered when interpreting. We need to think about what scale our parameters are working on!

Remember the link function! The parameters (coefficients) are for the linear predictor, which sits inside
the link. Our link here was log(), the inverse is exp(). This is the natural log and exp() = e which is
approximately equal to 2.71828. It calculates x to the power of e e.g. exp(x) = z°.

We want to interpret on the original scale of our data. This works differently for the different parameters we
estimate.

e «, the intercept, this represents the value of Y when X = 0. Therefore, to be meaningful to us, we want
this on the scale of y. To interpret it, and for plotting, we want to take the inverse of the coefficient
estimate given by the glm(). The unit of the intercept = Y.

e [, slopes, these represent the slope of a continuous relationship or the move from x=0 to x=1. Generally,
it represents the change in Y for a change of 1 unit in X. It represents this change on the link scale,
so the link(Y’) not just Y here. Right now, we do NOT want to take the inverse of the § coefficient
estimate to interpret it. What we might want to do, for prediction or plotting, is to take the inverse of
the actual prediction. (But more on how you can interpret it directly in the next two weeks). We can
do this by predicting first using a linear equation, then take the inverse of the link. Or, we can take the
inverse of the linear equation itself e.g. exp(alpha + betaX) or y = alpha + betaX, exp(y). You
can interpret the direct and type of effect without transforming the coefficient at all. This works the
same as for an 1m().

Convert the a estimate back onto the original scale of Y

Hints

You will need to use the function exp() to take the inverse of the log.

You can either type out the coefficient estimate or extract straight from the model e.g. coef (MODEL) [1].

Answer

exp (coef (PhoenixModel) [1])

## (Intercept)

## 3

Look at the raw estimate of 8 and see if you can interpret. Remember that Location is categorical.
Hints

The direction of the effect will not change between the link and original scales.

Strength might be harder to work out now, more on that in two weeks.

Answer

As the direction won’t change you can see there is a negative effect of location i.e. Scottish phoenix have
small clutches on average than Norwegian ones. To be sure, I would want to see the confidence intervals.

confint (PhoenixModel)

## Waiting for profiling to be done...

## 2.5 % 97.5 %
## (Intercept) 0.9341921 1.2544806
## LocationScotland -1.6270659 -0.9408995

Now I can see that the confidence interval does not cross 0, so no difference is not a plausible value for the
effect of location.
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Try plotting the result instead using the code below.
To do this, you can use the function 1ines() it takes the arguments:

e y, this should be a vector of two values the prediction for the mean of Norway and then the prediction
for the mean of Scotland

o x, this is a vector of two values, here this would be ¢(1,2)

e col, choose a colour

You need to repeat the plot of the draw data to draw the line onto. See code above for that, in
answers at the beginning of this section. You’ll want the plot of raw data.

To get the predictions for each group:

o Norway = intercept value (but on original scale)
o Scotland = intercept + the effect of Scotland (on original scale)

If no line appears, something went wrong with converting to the original scale.

Answer

# repeat plot from above

plot(y = PhoenixData$ClutchSize,
% = as.numeric(PhoenixData$location),
pch = 12, col = "red",

las = 1,

xlab = "Location",

ylab = "Clutch size",

xaxt = 'n') # this last bit removes the T azis

# draw your own T axris

axis(side = 1, # tells you where to draw azis, 1 =z, 2 =y
at = c(1, 2), # tells R where on the azis to put the labels
labels = c("Norway", "Scotland")) # these are the labels we want

# calculate mean of scotland on log scale
MeanScotland <- coef (PhoenixModel) [1] + coef (PhoenixModel) [2]

# THEN convert
MeanScotlandOriginal <- exp(MeanScotland)

lines(x = c(1,2),
v = c(exp(coef (PhoenixModel) [1]), # intercept
MeanScotlandOriginal), # Scotland prediction
col = "blue")
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Have a go at answering “Does location impact clutch size of the phoenix?”
Answer
link
Answer in words

You can see from the estimates and the plot that yes location does seem to have an impact on clutch size.
Scotland has a lower clutch size than Norway. The confidence intervals for this effect do not cross 0, so we
are quite sure of this direction.

Could be many reasons this happens. Phoenix are warm birds, maybe they breed best when it is a bit cooler
outside (Norway is colder than Scotland). Or any other ideas!

Part G: Model checking

Now you have a model, it is important to check it too. This can be similar to the checking for an 1m() but
we need to use different residuals. This is because our residuals are be definition, not normal for most GLMs.

The assumptions for a GLM are also a bit different than for a linear model.
Assumptions of a GLM (new ones are in bold):

e Lack of outliers

e Correct distribution used

e Correct link function is used

e Correct variance function is used

e Dispersion parameter is constant

e Independence of Y
How we check these also changes. For linear models we used:

¢ Residuals vs fitted plots for linearity and equal variance
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e Normal Q-Q plots for the normality of residuals
e Cook’s distance to check for outliers

These were reasonably straight forward to interpret (most of the time) — we know what we are looking for
with each.

This is not the case for GLMs — non-normal variance!

For GLMs things are a little different since GLMs have non-normal and non-constant variance (for Binomial
and Poisson distributions the variance is controlled by the mean). We want to produce diagnostic plots that
are roughly normal. Therefore, we correct the model residuals to make them more normal.

There are two ways of doing this: Pearson and Deviance residuals. These are not perfect in any way.
These measures scale the residuals by the variance. Once we have scaled the residuals in this way to account
for non-equal variance, they should be approximately normal.

Pearson residuals

These are calculated by dividing the residual (difference between observed data point y; and the fitted value
i) but the standard deviation of the estimates o:

Yi — i

T

Res), =

In R, the Pearson residuals are obtained by:

residuals_pearson <- resid(glm_model_object, "pearson")

Pearson residuals follow a chi-squared (x?) distribution.
Deviance Residuals

These are calculated by calculating the individual deviance d; (the contribution of each data point to the
deviance of the model) and then assigning this a direction based on the sign of the difference between the
observed data point y; and the fitted value fi:

Resp = sign(y; — fi)\/d;

where sign(y; — i) = 1 when y; — ot > 0 and sign(y; — i) = —1 when y; — i < 0.
The deviance residuals are the default in the glm().

In R, the Deviance residuals are obtained by:

residuals_deviance <- resid(glm_model_object, "deviance")

Example of Pearson and Deviance residuals
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Check the fit of your phoenix model using both Pearson and Deviance residuals. Use residuals vs fitted,
normal QQ and cook’s distance plots. Check linearity, normality, and outliers.

Code to help is here:

resid(model, "pearson")
resid(model, "deviance")
fitted(model)

plot(fitted, residuals)

qgnorm(residuals)
qqline(residuals)

plot(model, 4) # cook’s distance

You might want to use the argument main in plot to set a title.
cook’s D will just be for deviance residuals.

What do you think? How easy was it to interpret the plots?
Answer

Here are the plots you should have made.

# first create an object of residuals and one of fitted wvalues

pearson <- resid(PhoenixModel, "pearson")
deviance <- resid(PhoenixModel, "deviance")

FittedValues <- fitted(PhoenixModel)
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# set up plotting window to be 3 rows and 2 columns
par( c(3,2))

# residuals vs fitted (deviance then pearson)
plot(FittedValues, deviance,
"Deviance") # add title so you know which %is which

plot(FittedValues, pearson,
"Pearson")

# mormal qq
qgnorm(deviance)
qqline(deviance)

qgnorm(pearson)
qqline(pearson)

# cook's d
plot (PhoenixModel, 4) # cook’s distance
Deviance Pearson
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I expect these to be much harder to interpret than for a linear model. Even with the correction to the
residuals, they are still not very well behaved.

This is especially true for the normal QQ plot that shows strange horizontal lines. This is because the
response is discrete.

The Cook’s D is maybe a bit easier to interpret. Generally, it seems like the assumptions of all plots are met
pretty well. In the residuals vs fitted, there is even-ish spread above and below 0, the normal QQ generally
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follows the line and there are no clear outliers.
Are the two types of residuals different?
Answer

Yes, the residuals are different but not in a clear way.

Overdispersion
Looking back to the start of this section, we gave a list of assumptions of a GLM:
e Lack of outliers
e Correct distribution used
e Correct link function is used
e Correct variance function is used
e Dispersion parameter is constant
e Independence of y

Some of these are the same as for linear models. But some are different. This section focuses on the two
assumptions in bold above.

In Binomial and Poisson GLMs we assume that the variance is controlled by the mean. But this is not always
true. It is something we need to check as part of the model checking process.

Two things can happen:
1. We could get overdispersion (more variation than we expect).
2. We could get less variation than we expect.

The first option is a bigger problem and something we need to correct for, if we find it.

How do we check for overdispersion? To check for overdispersion in GLMs we need to calculate the
deviance. To do this we take the ratio of residual deviance and residual degrees of freedom.

Our assumption is that the deviance = 1. So, we want a value close to that. >1.2 indicates a potential
problem.

We can find these deviance values in summary() they are in the final paragraph of the output as discussed
back in Part C. (link) e.g.

summary (PhoenixModel)

##

## Call:

## glm(formula = ClutchSize ~ Location, family = poisson(link = log),
## data = PhoenixData)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.4495 -1.2961 0.1694 0.5491 2.3861

##

## Coefficients:

#it Estimate Std. Error z value Pr(>lzl)

## (Intercept) 1.09861 0.08165 13.455 < 2e-16 **x*
## LocationScotland -1.27297 0.17457 -7.292 3.06e-13 *x*x*
##t ——
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## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)
##

## Null deviance: 180.62 on 99 degrees of freedom

## Residual deviance: 116.17 on 98 degrees of freedom
## AIC: 319.86

##

## Number of Fisher Scoring iterations: 5

For the example above (the phoenix model) the Deviance ratio = 116.17/98 = 1.1854082.
We assume a value of 1, 1.185 is just ok. Any higher and we might want to investigate further.

The main problem with overdispersion is: uncertainty. If there is more variation, the uncertainty in the
estimate should be wider. However, if our model does not know there is extra variation and it is assuming
something else, it will give uncertainty that is too narrow! We want the correct amount of uncertainty for
our model and data.

There are a few ways to correct for overdispersion, more on that in two weeks!

For now, just know that it is something we should check for.

Next week

Next week and the final week, we will use specific examples of GLMs (Binomial and Poisson).
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