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Now you have learned about why model selection is needed, you should be ready to find out how hypothesis
testing is really model selection, and how to actually do it in R.

Hypothesis Testing
Hypothesis Testing is asymmetrical: we do not see the models being compared as equal. Hypothesis tests ask
the question “Is the model without the effect sufficient to explain the data?”, so the model with the effect is
only declared the winner if the one without isn’t good enough.

This is how to do statistical hypothesis testing

1. get a null hypothesis (i.e. without the effect)
2. get an alternative hypothesis (i.e. with the effect)
3. Chose a test statistic (e.g. the likelihood)
4. calculate the distribution of the test statistic if the null hypothesis was true
5. ask if the observed value of the statistic falls within the null distribution
6. if it does not, declare that the data were unlikely if the null hypothesis were true (and then make

whatever biological inference seems reasonable).

As an example, we can look at the regression model we were using a few weeks ago.
Lk <- "https://www.math.ntnu.no/emner/ST2304/2019v/Week1/Olymp100m.csv"
# Lk <- "../Data/Olymp100m.csv"

Times100m <- read.csv(Lk)
Use <- Times100m$Sex=="Women" & !is.na(Times100m$WinningTime)
WomensTimes <- Times100m[Use,]
plot(WomensTimes$Year, WomensTimes$WinningTime)
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The question is whether the times are changing. This is the same as asking if the slope is not zero, which is
the opposite as asking if the slope is zero. Here is the process for this problem.

For each of these, in relation to the running times, try to work out what you need to do, and then click on
“Answer” to see if you are right.

1. Decide on a null hypothesis

Answer

The slope is zero

2. Decide on an alternative hypothesis

Answer

The slope is not zero

3. Chose a test statistic

Answer

The slope is the obvious choice, and is correct. But below we will use the likelihood, because it can be used
for more problems.

4. calculate the distribution of the test statistic if the null hypothesis was true

This will be your job, but you can wait until later to see how it is actually done. For now, how do you think
you could do it?

Answer

You could simulate the data lots of times from the null model, or do lots of maths to work out what the
distribution should be. Don’t worry, below you will do the former.

5. ask if the observed value of the statistic falls within the null distribution

This will be your job below

Exercise: Testing the Hypothesis
Is the likelihood from the data likely if the null hypothesis is true?
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Use this code & compare the model.H1 likelihood with the null distribution. Be aware that the final line
(Lhood <- replicate(...)) takes a bit of time to run. If you want to check that it is working, change the
1e5 to a smaller number (e.g. 1e2).
# Null Hypothesis
model.H0 <- lm(WinningTime ~ 1, data=WomensTimes)
# Alternative Hypothesis
model.H1 <- lm(WinningTime ~ Year, data=WomensTimes)

# This function simulates data from a model, and returns the likelihood
SimNullModel <- function(mod, X) {

Sim <- simulate(mod) # simulate data from model
model.test <- lm(Sim[,1] ~ X)
logLik(model.test) # extract log-likelihood

}
# This line repeatedly simulates data from the null model, so retuens a distribution of the likelihood
Lhood <- replicate(1e5, SimNullModel(mod=model.H0,

X=WomensTimes$Year))

Is the data likely to have been generated by the null hypothesis model?

Hint

You could plot the distribution of likelihoods with hist(). To get a p-value, you need to calculate what
proportion of the distribution is more extreme than the likelihood for the alternative hypothesis (which you
can get with logLik(model.H1)). A trick to do that is to use mean(), e.g. mean(c(1,2,5,6)>4) returns 0.5

Answer

For those who want a video click here or watch:

First, we can run the code and plot a histogram of the simulated likelihoods:
# Null Hypothesis
model.H0 <- lm(WinningTime ~ 1, data=WomensTimes)
# Alternative Hypothesis
model.H1 <- lm(WinningTime ~ Year, data=WomensTimes)

# This function simulates data from a model, and returns the likelihood
SimNullModel <- function(mod, X) {

Sim <- simulate(mod) # simulate data from model
model.test <- lm(Sim[,1] ~ X)
logLik(model.test) # extract log-likelihood

}
# This line repeatedly simulates data from the null model, so retuens a distribution of the likelihood
Lhood <- replicate(1e5, SimNullModel(mod=model.H0,

X=WomensTimes$Year))

hist(Lhood, main="Simulated Likelihoods")
abline(v=logLik(model.H1), col=3)

3

https://ntnu.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=77855a18-707e-437e-bce6-aceb01158fea


Simulated Likelihoods

Lhood

F
re

qu
en

cy

−20 −10 0 10

0
50

00
15

00
0

The absolute values of the log likelihood do not matter: what is important is their comparison with the value
we get from the data. We can see from the histogram that almost all simulations from the null distribution
(i.e. the distribution if the null hypothesis was true) have likelihoods smaller than the one we see in the data.

Indeed, for this set of simulations, only 46 simulations had a larger likelihood (your numbers might be a bit
different because the simulations are random). This equates to 0.05% of the simulations.

You can get these numbers in the following way. First, create a vector that tests if the simulated likelihood is
larger than the likelihood in the data: Lhood>logLik(model.H1). Then to count how many are larger, add up
the values: sum(Lhood>logLik(model.H1)). This works because Lhood>logLik(model.H1) returns a logical
vector, i.e. a vector with values TRUE or FALSE. Then using sum() R first converst the TRUEs to 1 and FALSEs to
0. Then summing these sums up the TRUEs, i.e. counts them. To get the proportion, we need to divide by the
total length of the vector. But this is what mean() does, so we use that: mean(Lhood>logLik(model.H1))

What conclusion can you make about how times have changed in the women’s 100m?

Hint

There is a strict answer to this, which is correct, and the easy answer which is probably what is going on
(and is a scientific inference from the statistical results).

Answer

Strictly, from this test, all we can say is that we are very unlikely to have got this data if times were not, in
fact, changing.

The ‘easy’ answer is that the times are decreasing over time, i.e. women have been getting faster.

Why Use the Likelihood?
We could use any reasonable test statistic to test whether women’s times have changed in the 100m. The
slope parameter might be a more direct statistic to use, because it is a direct measure of the change. So why
do we use the likelihood?
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The likelihood is a measure of overall model fit: it is Pr(Data|parameters). This means it should be useful for
many problems (i.e. we don’t have to decide on a new statistic for each problem). Also, because it summarises
whole model, it can be used to test more complicated hypotheses, such as when several treatments are used
in an experiment, it can test whether any of the treatments work. So, for example, in the example from the
last couple of weeks about ferilisers, we can ask whether any fertilisation has an effect. Or whether there are
any interctions between date and feriliser (this latter test is useful because if there are no interactions, the
model gets easier to interpret).

The likelihood also has some nice statistical properties, which makes it easier to use in practice. So we
don’t have to do simulations, because we know what the distribution of the statistic will be under the null
hypothesis (at least approximately, but the approximation is usually pretty good).

The main “nice statistical property” is that we know the distribution for the difference between likelihoods
when the models are nested. Nested moels are those where one is a subset of another. In particular, if we
set some of the parameters of the larger model to zero, it becomes the smaller model. We then say that
the smaller model is nested with in the larger one. For example, the model yi = α + εi is nested within
yi = α+ βxi + εi: we can set β to 0 and they become the same.

It turn out that twice the difference in log likelihoods follows a χ2 distribution:

−2(log(L1)− log(L0)) ∼ χ2
p

where p is the difference in the number of parameters between the models. We call this the degrees of freedom.
They are the amount of information used to estimate the distribution: we “spend” p pieces of information to
estimate p parameters. We use −2log(L) a lot in statistics, so we call it the deviance.

We will use this later: for GLMs we can use the deviance to compare models. But for the normal distribution
things are a bit more complicated. The log-likelihood is

log(L) ∝ −
∑

(yi − µ̂i)2

2σ2

so it also needs σ2. The χ2 distribution is only correct if we fix σ2, but in practice we estimate it and this
adds some extra error to the statistic. Instead we use

F = −2(log(L1)− log(L0))
s2

n− p
p

where s2 is the estimate of the residual variance, which also follows a χ2 distribution. We know from statistical
theory that the ratio of χ2 distributions divided by their degrees of freedom follows an F distribution (which
is why we call this F ). The numerator of F is the difference in likelihoods, and this has p degrees of freedom.
The denominator, s2, is the estimator of σ2, the residual variation. We use the estimate of this from the
most complex model, so it is

s2 = 1
n− p

∑
(yi − µ̂i)2

We use n− p because we have n data points, but we “spend” p of them to estimate the model (i.e. µ̂i), so we
have n− p left to estimate s2.

Degrees of Freedom

I suspect statisticians have spent far too much time worrying about degres of freedom, but for the models we
are looking at in this course they can be quite useful, because they summarise how we use the information in
the data.
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We can think of each data point we collect as one “piece” of information. If we want to estimate a parameter,
we need one piece of information to do that. Once we have estimated all of the parameters we want to, we
use the rest to estimate the residual variance.

Our uncertainty about a parameter estimate depends on the residual variance, so the better we estimate
that, the more confident we can be about our paramters. Thus we want to use lots of degrees of freedom to
estimate the residual variance, because that improves all of the estimates. In other words, we want lots of
data. But it also means we don’t want to estimate too many parameters, because they use up degrees of
freedom.

What We Do In Practice
As a result of all of that theory, we find that to compare models we just need the sums of squares and degrees
of freedom. Of course R will do the hard work for us:
model.H1 <- lm(WinningTime ~ Year, data=WomensTimes)
anova(model.H1)

Analysis of Variance Table

Response: WinningTime
Df Sum Sq Mean Sq F value Pr(>F)

Year 1 2.64645 2.64645 59.76 8.626e-07 ***
Residuals 16 0.70855 0.04428
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first column gives the degrees of freedom (for the difference in models and, in the final row, for the
residual variance). The second gives the sums of squares, e.g.

∑
(yi − µ̂i)2. The third column is the “mean

square error”, i.e. the sum of squares divided by the degrees of freedom. The fourth column gives the F
statistic, i.e. the mean squares divided by the residual mean square error.

The final column is the p-value for the F statistic, i.e. the probability that we would get the observed value
or one more extreme if the null hypothesis (i.e. the samller model) was correct, if we re-sampled the data lots
of times.

I mentioned the null hypothesis in the previous paragraph, but it doesn’t appear in the table. That is
because the null model is WinningTime ~ 1, and R implicitly uses this. Later, when we have more than one
hypothesis, we will see that the null hypothesis for each test comes from the previous line in the anova()
output.

We can also make the comparison of models more explicit:
model.H0 <- lm(WinningTime ~ 1, data=WomensTimes)
model.H1 <- lm(WinningTime ~ Year, data=WomensTimes)
(an <- anova(model.H0, model.H1))

Analysis of Variance Table

Model 1: WinningTime ~ 1
Model 2: WinningTime ~ Year

Res.Df RSS Df Sum of Sq F Pr(>F)
1 17 3.3550
2 16 0.7086 1 2.6465 59.76 8.626e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Can you work out what the output means? (hint: compare this to the output from anova(model.H1))
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Answer

Here we see that R explicitly gives a line for each model, and gives the residual sum of squares (“RSS”) for
that model. The difference in the RSS between models is another way of calculating the sums of squares for
the difference in the models. The other columns are the same (compare the numbers in the two tables if
you’re not sure).

A more complex problem
The full data of 100m times has both men and women. The main reason to look at the data was to ask
whether women’s times were getting quicker at a faster rate than men’s (and thus would women eventually
run the same times as men).

The null model is thus that the change in times is the same for men and women. We can also assume that
the mean times are different, i.e. the intercepts are different. This would be the null model:
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The alternative hypothesis is that the lines are different:
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We thus want to compare the model WinningTime ~ Sex+Year with WinningTime ~ Sex*Year
NullModel <- lm(WinningTime ~ Sex+Year, data=Times100m)
FullModel <- lm(WinningTime ~ Sex*Year, data=Times100m)

anova(NullModel, FullModel)

## Analysis of Variance Table
##
## Model 1: WinningTime ~ Sex + Year
## Model 2: WinningTime ~ Sex * Year
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 39 1.3369
## 2 38 1.1078 1 0.22918 7.8615 0.007911 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So we can see that the data are unlikely if there was no difference in times. But we have to look at the
estimates to know what direction the difference is:
summary(FullModel)

##
## Call:
## lm(formula = WinningTime ~ Sex * Year, data = Times100m)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37579 -0.05460 0.00738 0.08276 0.32234
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31.826453 2.128910 14.950 < 2e-16 ***
## SexWomen 12.520596 4.076141 3.072 0.00392 **
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## Year -0.011006 0.001089 -10.104 2.56e-12 ***
## SexWomen:Year -0.005817 0.002074 -2.804 0.00791 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1707 on 38 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.9275, Adjusted R-squared: 0.9218
## F-statistic: 162.1 on 3 and 38 DF, p-value: < 2.2e-16

(I will let you work out how to interpret this. If in doubt, plot the data)

We can also get the test like this:
anova(FullModel)

## Analysis of Variance Table
##
## Response: WinningTime
## Df Sum Sq Mean Sq F value Pr(>F)
## Sex 1 8.5566 8.5566 293.5207 < 2.2e-16 ***
## Year 1 5.3937 5.3937 185.0198 3.507e-16 ***
## Sex:Year 1 0.2292 0.2292 7.8615 0.007911 **
## Residuals 38 1.1078 0.0292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We want to look at the final line, the Sex:Year effect: this is the same as the test above. But what about
the other terms?

anova() with several terms

anova() can be useful when we want to look at several models. However this also makes in dangerous.

If anova() is given a single model, it will look at the models that are needed to build it up by adding single
terms, and test each of these. So it looks at the Sex * Year model and sees that it can be built up from the
following models:

• 1 (i.e. a constant)
• Sex (add the Sex effect)
• Sex + Year (add the Year effect to the model with Sex)
• Sex * Year (add the interaction)

It then compares these in the order given, so the first column of the table tells us which explanatory variable
has been added. For example, the Year row compares the Sex + Year model with the Sex model.

Why is this dangerous? For two reasons:

1. The test results can depend on the order the terms are added into the model. There are examples
where the first variable you enter into the model is not significant, but the second is. And it doesn’t
matter which variable is put in first. The Schey example from multiple regression is an example of this.

2. If you have interactions, the tests of main effects are almost meaningless and should be ignored. For
example, the Sex test tests whether Males and Females have different times at the origin. If we move
the origin (e.g. by standardising the data), we can get different test results. Similarly, the Year effect
tests whether there is an overall Year effect. but if this differs between treatments, it can be that it is
positive in some, and negative in others. The test then depends on if there is more data in treatments
that are positive or negative.
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When you are testing a specific hypotheses, you should be able to explicitly fit the null and alternative models,
and so should be able to use anova() to compare them. If you have a lot of possible models, you are not
testing hypotheses, so should probably not be using anova().

Why is ANOVA called ANOVA

ANOVA = Analysis of Variance

The approach was first developed to analyse field trials. When the data cooperate1, the mean squared error
is an estimate of the variance explained by that effect.

Unfortunately, ANOVA now has two meanings:

• linear model with categorical factors
• model testing for linear models

Your Turn
This is the Yields data from a couple of weeks ago.
Yields <- read.csv("https://www.math.ntnu.no/emner/ST2304/2021v/Week08/Hoosfield_Yields.csv")

Is there an interation between treatment and date (i.e. before/after 1970)? First, think about what the null
and alterntive models are, then fit and compare them

Hint

The models are
model.yield.H0 <- lm(yield ~ After1970 + Treatment, data=Yields)
model.yield.H1 <- lm(yield ~ After1970 * Treatment, data=Yields)

and you can use anova() to compare them.

Answer

If you want to watch the video, it’s below, or you can click here

First, fit the models and compare with anova():
model.yield.H0 <- lm(yield ~ After1970 + Treatment, data=Yields)
model.yield.H1 <- lm(yield ~ After1970 * Treatment, data=Yields)
anova(model.yield.H0, model.yield.H1)

## Analysis of Variance Table
##
## Model 1: yield ~ After1970 + Treatment
## Model 2: yield ~ After1970 * Treatment
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 67 34.578
## 2 64 14.767 3 19.811 28.621 7.403e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that the F-ratio is 28.62. If the null model was true, we would expect this to be about 1. So it’s
bigger, but would it still likely if the null hypothesis (i.e. of no interaction) was true? Well, the p-value is
7.4× 10−12, which suggests that the results (i.e. the estimates of the interaction parameters) would be very
unlikely if there were no interaction. So we can surmise that there is some interaction, i.e. the relative effects
of some of the treatments changed after 1970.

1this means the data have to be balanced, so each combination of levels of factors has the same number of observations
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We can also use anova() on just the interaction model:
model.yield.H1 <- lm(yield ~ After1970 * Treatment, data=Yields)
anova(model.yield.H1)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## After1970 1 13.062 13.0622 56.613 2.225e-10 ***
## Treatment 3 93.871 31.2905 135.617 < 2.2e-16 ***
## After1970:Treatment 3 19.811 6.6037 28.621 7.403e-12 ***
## Residuals 64 14.767 0.2307
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Each row of the anova() table shows the effect of adding that effect to a model that has the terms in the
rows above it. i.e.

1. The first row of the table compares a model with just a constant (i.e. yield ~ 1) with one where
After1970 is an effect (i.e. yield ~ After1970).

2. The second row of the table compares a model with After1970 as an effect (i.e. yield ~ After1970
to one with After1970 and Treatment as effects (i.e. yield ~ After1970 + Treatment).

3. The third row of the table compares the model with After1970 and Treatment (the “main effects”)
and adds the interaction: yield ~ After1970 + Treatment + After1970:Treatment.

So, we just want the third row, and we can see that the statistics are the same as in the output from the
anova(model.yield.H0, model.yield.H1) output.

Next
If you want to go back to why we select models you can. Or move forward to find out about exploratory
model selection.
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