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The Poisson distribution and log-linear models
First, a video.

link

This week you will:

• learn about log-linear models
• learn about over-dispersion

– when there is more error than you expect

A Model for Counts: Fishing
Imagine sitting on the banks of the river Seine in Paris, fishing. Fish swim past randomly at a constant rate.
If we catch fish for an hour, how many fish do we catch? Because they swim past randomly, the number will
vary. it will also depend on the density of fish (and how fast they swim etc. etc.). But if we catch them at
rate µ, the mean number we catch in time t will be λ = µt. The actual number will vary, and will follow a
Poisson distribution:

Pr(N = r|λ) = λre−λ

r!
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Figure 1: Anglers by Raoul Dufy
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Now, as some of you may know, the French for fish is poisson (and the French call April 1st poisson d’avril,
so beware). But the Poisson distribution is actually named after Baron Siméon Denis Poisson.

Figure 2: Siméon Denis Poisson

By François Séraphin Delpech - http://web4.si.edu/sil/scientific-identity/display_results.cfm?alpha_sort=W,
Public Domain, https://commons.wikimedia.org/w/index.php?curid=536305

Count data is common, for example the numbers of murders, offspring, bacterial/fungal colonies, and of
course the number of people infected with a disease. So the ideas we discuss here will have a wide range of
uses, and also form the basis of a lot of different models for different types of data.

The Poisson distribution
So, what does the Poisson distribution look like? You can take a look! Here is some code to simulate 1000
data points from a Poisson distribution with a mean of 1.5. The plot(table(...)) line of code plots the
frequency of each count, e.g. the number of simuations with 0 counts (this is a histogram, but the plots are a
bit nicer than using hist()):
Mean <- 1.5
Pois <- rpois(1000, Mean)
plot(table(Pois), lwd=8, lend=3)

Use this code and change the value of Mean to see what happens to the shape of the distribution when
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• the mean is less than 1?
• the mean equals 1
• the mean is above 1
• the mean gets large (i.e. a lot bigger than 1: chose your own values)?

Answer: the mean is less than 1?

We can try with 0.5:
Mean <- 0.5
Pois <- rpois(1000, Mean)
plot(table(Pois), lwd=8, lend=3)
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The most common value is 0, and as the number of counts goes up, their frequency decreases.

Answer: the mean equals 1?

Now we plug in 1 for Mean:
Mean <- 1
Pois <- rpois(1000, Mean)
plot(table(Pois), lwd=8, lend=3)
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Both 0 and 1 are equally common (you will see some random variation, of course. If you run the code a few
times, you’ll see that the heights of the lines for 0 and 1 are usually about the same, but either can be a bit
larger), and as the number of counts goes up, their frequency decreases.

Answer: the mean is larger than 1?

We can try a mean of 1.5:
Mean <- 1.5
Pois <- rpois(1000, Mean)
plot(table(Pois), lwd=8, lend=3)
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Here the most common value (the mode) is 1, and the distribution tails off above that.

How about a mean of 5?
Mean <- 5
Pois <- rpois(1000, Mean)
plot(table(Pois), lwd=8, lend=3)
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Now the mode is about 5 (but 4 and 6 are also fairly likely, so they might have larger values in another
simulation). Again, this tails off for larger values.

Also notice that this distribution is positively skewed - above the mode the values spread out more.

Answer: the mean is large?

Let’s go big with 50:
Mean <- 50
Pois <- rpois(1000, Mean)
plot(table(Pois), lwd=8, lend=3)
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The plot looks messier, so now a histogram does work better:
hist(Pois)

Histogram of Pois
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The histogram looks more like a normal distribution.

Some useful facts about the Poisson distribution
Some useful facts about the Poisson distribution. You’ll be AMAZED at number 4
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1. When the mean is large, it is approximately a normal distribution. This means that if you
have large counts, you might as well model the data with a normal distribution (it is also commom to
log transform it first).

2. If two random variables are Poisson distributed, the number of one type conditioned on
the total follows a binomial distirbution. OK, I need to explain this. Imaagine we were back to
catching Parisian fish, and we catch two species, say perch and pike. We might be interested in what
proportion are perch. If both follow Poisson distributions, and we catch Nperch and Npike, then Nperch
given Nperch +Npike follows a binomial distribution, with P = λperch/(λperch + λpike). The upshot of
this is that if we have a data analysis problem where we want to look at proportions, we can actually
use a Poisson distribution instead. Whether we want to depends on us: sometimes it is easier to use a
Poisson, and sometimes a binomial.

3. Following on from this, if we have a binomial distribution with a small p, the number of “successes”
approximately follows a Poisson distribution with λ = Np. This is also useful: in epidemiology there
are a lot of rare diseases, and it is easier to model the numbers rather than proportions, and to talk
about risks as proportions (e.g. “relative risk”). So diseases can be (say) twice as common.

Is the Poisson a GLM?
The log-likelihood is l(N = r|λ) = r log λ− λ− log(t!), so how does this compare to a GLM likelihood? Let’s
use some colours!

The log-likelihood:

l(N = r|λ) = rlog λ− λ− log(t!)

The GLM likelihood:
l(θ|y) = yθ − b(θ)

a(φ) − c(φ, y)

So a(φ) = 1

and θ = log λ

Thus this is a GLM, and the natural link function is a log link. It is very rare than any other link function is
used.

Interpretation
The log link also makes the interpretation straightforward. If we are counting something, the process is
multiplicative. So if we double the effort, we double the number of counts we expect. On the log scale this is
additive:

log(λ) = α+ βx

λ = eα+βx = eαeβx

if we make x a dummy variable, i.e. 0 or 1, then if β doubles the mean (i.e. λ = 2eα), β = log(2) = 0.69.

This is why these models are sometimes called log-linear models, because they are linear on the log scale.

There are some additional aides to interpretaion. If a coefficient is small, it is (approximately) the percent
increase. So eα+β means an increase by eβ ≈ 1 + β times (if β is small). So a coefficient of 0.01 is equal to
about a 1% increase. A coefficient of 0.1 is about a 10.5% increase, so the approximation is getting worse.

Also, the coefficients are symmetrical. A value of +0.01 increases the mean by e0.01 times, and a value of
-0.01 decreases the mean by e0.01 times. This means that the sign only shows the direction, the absolute value
show the strength.
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Model Fitting
Model fitting is easy, we can use the glm() function, almost like we did with the binomial distribution:
mu <- seq(1,2, length=10)
Count <- rpois(length(mu), mu)
m1 <- glm(Count ~1, family=poisson("log"))
m1a <- glm(Count ~1, family="poisson")

We just need to tell R to use the Poisson family. It will use the log link by default. We can use summary(),
coef(), confint(), anova() etc just as we have before.

An Example: Himmicanes
A few years a go a strange paper appeared in PNAS that suggested that hurricanes in the USA with female
names caused more deaths than those with male names. This was rather a surprising result, so was worth
checking. Fortunately, the authors of the paper made their data available. This is the data (you will need
this code soon):
File <- "https://www.math.ntnu.no/emner/ST2304/2019v/Week13/Himmicanes.csv"
HimmData <- read.csv(File, stringsAsFactors=FALSE)
# Select hurricanes with > 100 deaths
BigH <- which(HimmData$alldeaths>100)
# Make a factor out of the Gender variable
HimmData$GenderF <- factor(c("Male", "Female")[1+HimmData$Gender])

First we can plot the data:
plot(HimmData$Year, HimmData$alldeaths, col=HimmData$ColourMF,

type="p", pch=15, xlab="Year",
ylab="Number of Deaths")

text(HimmData$Year[BigH], HimmData$alldeaths[BigH],
HimmData$Name[BigH], adj=c(0.8,1.5))

legend(1984,200,c("Male","Female"),fill=c("blue","red"))
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We can see that the 4 hurricanes that caused the most death had female names. But also note that 3 of them
occured between 1956 and 1978, when only female names were used.

The data contains the following variables:

• Year: Year
• Name: Hurricane’s name
• Gender: Gender (0: Male, 1: Female)
• MasFem: A scoring of how feminine the name sounds. We won’t use this here
• Minpressure: minimum air pressure in the hurricane (a measure of stength)
• Category: Category of hurricane (larger is more severe)
• NDAM: Normalised damage (i.e. how much the hurricane cost, corrected for inflation etc.)
• alldeaths: Number of deaths

The aim is to predict the number of deaths, and see if it is explaned by the gender assigned to the hurricane.
It should also depend on the severity of the hurricane, which we can measure with minimum pressure,
normalised damage or Category.

We will model the number of deaths. these are counts, so a Poisson distribution is called for. This then
suggests a log link function. But which variables to use? Using Gender rather than MasFem will make
the interpretation easier (and doesn’t change the results), so we will us that. But should we use minimum
pressure, normalised damage or Category? Note that all 3 are correlated with each other, as we might expect.
So you should pick one to use in this analysis.

You should fit the model, using whichever variable you decided to use. You only need to use the main effects,
no interactions.

Fit the model! What estimates do you get? In particular, is there an effect of gender?

Panic Button, if you want a hint

Your code should look like this:
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A_Model <- glm(Count ~X, data=SomeData, family="poisson")
The_Same_Model <- glm(Count ~X, data=SomeData, family=poisson())

You need to work out what to plug in where.

Answers if you used minimum pressure

This is the code to fit the model, and the summary:
mod.minpres <- glm(alldeaths ~ GenderF+Minpressure, family="poisson", data=HimmData)
summary(mod.minpres)

##
## Call:
## glm(formula = alldeaths ~ GenderF + Minpressure, family = "poisson",
## data = HimmData)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.0023 -3.9983 -2.3865 0.2403 30.2263
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 39.302945 1.086442 36.176 <2e-16 ***
## GenderFMale -0.472112 0.054982 -8.587 <2e-16 ***
## Minpressure -0.037740 0.001143 -33.012 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4031.9 on 91 degrees of freedom
## Residual deviance: 2882.4 on 89 degrees of freedom
## AIC: 3213.3
##
## Number of Fisher Scoring iterations: 6

It suggests a large effect of gender: -0.47, which suggests that a male hurricane has exp(-0.47) = 0.62 the
deaths. Or, equivalently, a female hurricane has exp(- -0.47) = 1.6 times more deaths. The confidence interval
is -0.58 to -0.37, which would suggest the effect is definitely large.

Notice also that a higher pressure leads to less deaths - a change of 1 Mb changes the expected number of
deaths by exp(-0.04) = 0.96 times. A lower presure means a stronger hurricane, so this makes intuitive sense.
Also note that 0.96 is roughly a 4% decrease, so (as noted above) we can get an approximate estimate of the
percent change from just from the estimate.

Answers if you used hurricane Category

With Category we should probably use it as a factor. Although it is ordered (i.e. a category 4 hurricane is
more powerful than a category 3), we don’t know if the change from category 2 to category 3 should be the
same as from category 3 to category 4. If we treat it as continuous, we could use polynomials to adjust for
this, but we can “spend” a couple of parameters by making it categorical, and not having to worry.
mod.Cat <- glm(alldeaths ~ GenderF+factor(Category), family="poisson", data=HimmData)
summary(mod.Cat)

##
## Call:
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## glm(formula = alldeaths ~ GenderF + factor(Category), family = "poisson",
## data = HimmData)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.4087 -4.8534 -3.1476 0.3887 25.5639
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.74213 0.04883 56.159 < 2e-16 ***
## GenderFMale -0.62280 0.05574 -11.172 < 2e-16 ***
## factor(Category)2 0.57003 0.06482 8.794 < 2e-16 ***
## factor(Category)3 0.21635 0.06567 3.295 0.000985 ***
## factor(Category)4 0.84395 0.09479 8.903 < 2e-16 ***
## factor(Category)5 2.59045 0.07318 35.398 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4031.9 on 91 degrees of freedom
## Residual deviance: 2977.4 on 86 degrees of freedom
## AIC: 3314.3
##
## Number of Fisher Scoring iterations: 6

Which suggests a large effect of gender: -0.62, which suggests that a male hurricane has exp(-0.62) = 0.54
the deaths. Or, equivalently, a female hurricane has exp(- -0.62) = 1.86 times more deaths. The confidence
interval is -0.73 to -0.51, which woud suggest the effect is large.

Also notice that the effects of category become more positive as the category goes up. In other words, higher
categories lead to more deaths as we might expect: higher categories are stronger hurricanes.

Answers if you used normalised damage

Finally, damage:
mod.NDAM <- glm(alldeaths ~ GenderF+NDAM, family="poisson", data=HimmData)
summary(mod.NDAM)

##
## Call:
## glm(formula = alldeaths ~ GenderF + NDAM, family = "poisson",
## data = HimmData)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.8660 -4.2486 -3.0442 0.4558 24.0392
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.716e+00 3.178e-02 85.480 <2e-16 ***
## GenderFMale -5.368e-01 5.496e-02 -9.766 <2e-16 ***
## NDAM 3.630e-05 8.576e-07 42.333 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4031.9 on 91 degrees of freedom
## Residual deviance: 2731.7 on 89 degrees of freedom
## AIC: 3062.6
##
## Number of Fisher Scoring iterations: 6

Which suggests a large effect of gender: -0.54, which suggests that a male hurricane has exp(-0.54) = 0.58
the deaths. Or, equivalently, a female hurricane has exp(- -0.54) = 1.71 times more deaths. The confidence
interval is -0.65 to -0.43, which woud suggest the effect is large.

Also notice that the effect of damage is positive, so more damage means more deaths.

Summary of Answers

Whichever hurricane severity measure you use, you find that stronger hurricanes lead to more deaths, which
is not surprising. What is surprising is that gender seems to have a large effect, and the narrow coinfidence
intervals suggest we can be fairly certain about it. But this is not the full story.

For those poor souls who want to hear me explain the answers, here is the video

Model Comparison
We can compare models in the same way as before.
mod.null <- glm(alldeaths ~ 1, family="poisson", data=HimmData)
mod.onlyNDAM <- glm(alldeaths ~ NDAM, family="poisson", data=HimmData)
anova(mod.null, mod.onlyNDAM, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: alldeaths ~ 1
## Model 2: alldeaths ~ NDAM
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 91 4031.9
## 2 90 2836.3 1 1195.7 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Compare the models with and without gender: does there seem to be an effect?

Hint

Fit and compare these models (for NDAM, but this also works for the others): alldeaths ~ NDAM and
alldeaths ~ GenderF+NDAM

Answer

Yes, there definitely seems to be an effect. The smallest deviance is about 80, with 1 degree of freedom:
# Fit the additional models we need
mod.onlyminpres <- glm(alldeaths ~ Minpressure, family="poisson", data=HimmData)
mod.onlyCat <- glm(alldeaths ~ factor(Category), family="poisson", data=HimmData)
mod.onlyNDAM <- glm(alldeaths ~ NDAM, family="poisson", data=HimmData)

# Compare the models with ANOVA
anova(mod.onlyminpres, mod.minpres, test="Chisq")

## Analysis of Deviance Table
##

13

https://ntnu.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=aad0f839-90a0-43d9-ae01-ad0900fe40e2


## Model 1: alldeaths ~ Minpressure
## Model 2: alldeaths ~ GenderF + Minpressure
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 90 2962.4
## 2 89 2882.4 1 79.96 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod.onlyCat, mod.Cat, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: alldeaths ~ factor(Category)
## Model 2: alldeaths ~ GenderF + factor(Category)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 87 3115.2
## 2 86 2977.3 1 137.79 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod.onlyNDAM, mod.NDAM, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: alldeaths ~ NDAM
## Model 2: alldeaths ~ GenderF + NDAM
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 90 2836.2
## 2 89 2731.7 1 104.51 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model Checking
(there is a video walkthrough of this code at the end if the section)

Even if we fit a model, it might not be a good one. There are all the usual problems we’ve seen (outliers,
non-linearity etc.). We can check them in the same way we check other residuals, although with some checks
we can run into problems of non-normality. For example, we can get some weird patterns, like this
N <- 100
x <- runif(N)

Y <- rpois(N, exp(0+1*x))
mod.Y <- glm(Y ~ x, family = poisson())

plot(fitted(mod.Y), resid(mod.Y))
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Plots like this can still be useful, though. But we will look at another aspect of model fit.

One property of the Poisson distribution is that the mean equals the variance. But there is no reason why
the counts we observe have to do that. Indeed, we often (perhaps usually) see that the variance is larger than
the mean.

We can see what happens when we have over-dispersion by simulating some data without and with over-
dispersion. To do this we want to create some data that is from a Poisson distribution, i.e. a GLM is the
correct model. We will then alter the model by adding some extra variation (this will also help you understand
how a GLM is made).

We will use 1000 data points (because it’s a nice large number), and a single covariate which we will call X.
N <- 1e3
X <- rnorm(N)

Now, to build up the GLM. Follow these steps:

1. Calculate the linear predictor. You will need an intercept and a slope (for the effect of X). Choose some
sane values (e.g. 1.2 for each).

Panic Button, if you want a hint

The linear predictor will look like α+ βX

Answer

You might use different variables names and values, but that’s OK.
alpha <- 1.2
beta <- 1.2
eta.noOD <- alpha + beta*X

2. Use the inverse of the link function to calculate the expected values for each (simulated) data point

Panic Button, if you want a hint

The link function is the log link, so we want the inverse of that.

Answer
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Mean.noOD <- exp(eta.noOD)

3. Simulate each data point from a Poisson distribution

Panic Button, if you want a hint

Use the rpois() function

Answer (includes a bonus plot)
Y.noOD <- rpois(length(Mean.noOD), Mean.noOD)

plot(X, Y.noOD)
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You should now have some nice poisson-y data.

Next you need to simulate some over-dispersed data. There are lots of ways to do this. Here we will add a
second covariate that doesn’t go into the model: it is probably also how a lot of overdispersion occurs in real
data sets.

We need to create a new variable:
X.unobs <- rnorm(N)

1. Calculate the linear predictor with both the new and old X. You will need a regression coefficient
(=slope) for the X.unobs. I would suggest a value of 0.5:

Hint

The linear predictor will look like α+β1X1 +β2X2. You could also simply add the effect of the new covariate
to the old linear predictor.

Answer
beta.unobs <- 0.5
eta.OD <- eta.noOD + beta.unobs*X.unobs

2. Use the inverse of the link function to calculate the expected values for each (simulated) data point

16



Hint

The link function is the log link, so we want the inverse of that.

Answer
Mean.OD <- exp(eta.OD)

3. Simulate each data point from a Poisson distribution

Hint

Use the rpois() function

Answer
Y.OD <- rpois(length(Mean.OD), Mean.OD)

plot(X, Y.OD)
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So now we have some data from both a “good” model and one with over-dispersion. The first thing to note is
that the variances are different: for the parameter estimates I chose the variance for the good model is 79.9,
and for the over-dispersed model it is 107.9.

But what happens when we fit the model?

Fit a model to the data without over-dispersion, with X as a predictor. Then fit the same model with
overdispersion. Look at the summaries of the two models, in particular the coefficients, their standard errors,
and the residual deviance. What effects does overdispersion have (and what doesn’t it have?)

Panic Button, if you want a hint

The code should look something like this:
mod.Y <- glm(Y ~ x, family = poisson())
summary(mod.Y)

You need to find the relevant terms in the summary.

17



If you have done this and are not sure what’s real, and what is noise, run the same code a few times with
different simulations of the data, and see what patterns keep on appearing.

Answer

First, the model with no overdispersion
Model.noOD <- glm(Y.noOD ~ X, family = poisson())
summary(Model.noOD)

##
## Call:
## glm(formula = Y.noOD ~ X, family = poisson())
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.8670 -0.9363 -0.1624 0.6596 3.4291
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.21082 0.01938 62.47 <2e-16 ***
## X 1.18403 0.01449 81.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 8320.2 on 999 degrees of freedom
## Residual deviance: 1107.0 on 998 degrees of freedom
## AIC: 3932.5
##
## Number of Fisher Scoring iterations: 5

And with overdispersion
Model.OD <- glm(Y.OD ~ X, family = poisson())
summary(Model.OD)

##
## Call:
## glm(formula = Y.OD ~ X, family = poisson())
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.1262 -1.2351 -0.3825 0.5784 7.6463
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.33685 0.01819 73.48 <2e-16 ***
## X 1.15071 0.01378 83.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 10037.7 on 999 degrees of freedom
## Residual deviance: 2528.6 on 998 degrees of freedom
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## AIC: 5365.9
##
## Number of Fisher Scoring iterations: 5

Your results might be a bit different, because random number generators are random. But what you should
see are:

• the parameter estimates are the same (plus or minus some random error)
• the standard errors are the same (plus or minus some random error)
• the residual deviance is higher for the overdispersed data.

Here is a video of me waffling on whilst presenting the code.

Having overdispersion is like having more residual variation. The overall effect of more unexplained variation
should be to make things less precise. But we don’t see that here. Does this matter? Well, we can look at
what the distribution of parameters should be by doing these simulations lots of times, and looking at the
standard deviation
# Function to simulate the data with overdispersion, and return the coefficient for the effect of X
# betaOD=0 means no overdispersion
SimOverDisp <- function(alpha=1, betaX=1, betaOD=0, N=1e3) {
X <- rnorm(N)
X.unobs <- rnorm(N)

eta <- alpha + betaX*X + betaOD*X.unobs
Y <- rpois(length(eta), exp(eta))

Model <- glm(Y ~ X, family = poisson())
coef(Model)["X"]

}

# First run the simulations without overdispersion, and then with overdispersion
Repbeta0 <- replicate(1e2, SimOverDisp(betaOD=0))
Repbeta1 <- replicate(1e2, SimOverDisp(betaOD=1))
# And look at the standard deviations of the estimates
c(NoOD=sd(Repbeta0), OD=sd(Repbeta1))

## NoOD OD
## 0.01587353 0.09843870

What we see is that the variance should be larger - we should see wider standard errors.

The uncertainty in the estimates increases but this isn’t seen in the confidence intervals. But the residual
deviance does increase. The residual deviance summarises the amount of unexplained variation, and because
the variance of the Poisson distribution is determined by the mean, the amount of unexplained variation
should also be determined by the mean.

Once the maths is done (not by us!), it turns out that with no overdispersion, the deviance should (roughly)
equal the residual degrees of freedom. Indeed, it should follow a chi-squared distribution, with degrees of
freedom equal to the residual degrees of freedom. So we can use that to test whether there is overdispersion.

We can do this with the deviance ratio, which is the Deviance divided by the degrees of freedom. This
should equal about 1, but obviously there will be variation. As a rule of thumb, values below about 1.2 suggst
that even if there is overdispersion, it shouldn’t make big difference. If the null hypothesis is true (i.e. there
is no overdispersion), the deviance should follow a chi-squared distribution, so we can use that as a test.
(Dispersion <- deviance(Model.noOD)/df.residual(Model.noOD))

## [1] 1.109231
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pchisq(q = deviance(Model.noOD), df.residual(Model.noOD), lower.tail = FALSE)

## [1] 0.008863996

Note that we need lower.tail = FALSE in pchisq() because we are interested in knowing if the dispersion
is too big: this is a one-tailed test.

What evidence is there of over-dispersion in the Himmicanes data? Test it for one of the covariates

Answers

Minimum pressure:
(Dispersion.minpres <- deviance(mod.minpres)/df.residual(mod.minpres))

## [1] 32.38654
pchisq(q = deviance(mod.minpres), df.residual(mod.minpres),

lower.tail = FALSE)

## [1] 0

Categories:
(Dispersion.Cat <- deviance(mod.Cat)/df.residual(mod.Cat))

## [1] 34.62037
pchisq(q = deviance(mod.Cat), df.residual(mod.Cat),

lower.tail = FALSE)

## [1] 0

Normalised damage:
(Dispersion.NDAM <- deviance(mod.NDAM)/df.residual(mod.NDAM))

## [1] 30.69371
pchisq(q = deviance(mod.NDAM), df.residual(mod.NDAM),

lower.tail = FALSE)

## [1] 0

Regardless of which model we chose, the deviance ratio is huge, which suggests there is a lot of overdispersion.
The p-values are so small they are effectively 0.

Dealing With Overdispersion
Let’s have another video!

Overdispersion is so common that a few ways have been eveloped to deal with it:

• Correct in the likelihood
• Use a mixed model (not in this course, sorry)
• Use a different distribution

Correct the likelihood
The general form for a GLM likelihood is

l(θ|y) = yθ − b(θ)
a(φ) + c(y, φ)

20

https://ntnu.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=51055de5-2173-4d99-a3cb-ad0f00aa1d91


Thus far we have not discussed φ much. But here we need it. One way to correct for overdispersion is to
write a(φ) = cφ, and to estimate c. We can do this with the deviance ratio:
Dispersion <- deviance(Model.OD)/df.residual(Model.OD)

This should equal about 1, but obviously there will be variation. As a rule of thumb, values below about 1.2
suggst that even if there is overdispersion, it shouldn’t make big difference.

We use the dispersion estimate to correct the calcualtions of standard errors by plugging it into the summary:
summary(mod.OD, dispersion = Dispersion)

The effect is to increase standard errors by sqrt(Dispersion):
# Standard errors without over-dispersion
summary(Model.OD)$coefficients[,"Std. Error"]
# Standard errors without over-dispersion, multiplied by sqrt of dispersion
summary(Model.OD)$coefficients[,"Std. Error"]*sqrt(Dispersion)
# Standard errors with over-dispersion
summary(Model.OD, dispersion =

Dispersion)$coefficients[,"Std. Error"]

We can also use the dispersion in anova():
anova(Model.OD, dispersion = Dispersion, test="Chisq")

## Analysis of Deviance Table
##
## Model: poisson, link: log
##
## Response: Y.OD
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 999 10037.7
## X 1 7509.1 998 2528.6 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For the Himmicanes data, what happens to the results if you correct the analysis by correcting the estimates
with overdispersion? What happens with the model comparison, and with the estimates of the gender effect
and its standard error?

Hint

Look at both summary() and anova()

Answer

Regardless of which model we chose, the deviance ratio is over 30, which is huge.
(MinPresDR <- deviance(mod.minpres)/df.residual(mod.minpres))

## [1] 32.38654
(CatDR <- deviance(mod.Cat)/df.residual(mod.Cat))

## [1] 34.62037
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(NDAMDR <- deviance(mod.NDAM)/df.residual(mod.NDAM))

## [1] 30.69371

The models are compared here:
anova(mod.onlyminpres, mod.minpres, test="Chisq", dispersion = MinPresDR)

## Analysis of Deviance Table
##
## Model 1: alldeaths ~ Minpressure
## Model 2: alldeaths ~ GenderF + Minpressure
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 90 2962.4
## 2 89 2882.4 1 79.96 0.1161
anova(mod.onlyCat, mod.Cat, test="Chisq", dispersion = CatDR)

## Analysis of Deviance Table
##
## Model 1: alldeaths ~ factor(Category)
## Model 2: alldeaths ~ GenderF + factor(Category)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 87 3115.2
## 2 86 2977.3 1 137.79 0.04604 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod.onlyNDAM, mod.NDAM, test="Chisq", dispersion = NDAMDR)

## Analysis of Deviance Table
##
## Model 1: alldeaths ~ NDAM
## Model 2: alldeaths ~ GenderF + NDAM
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 90 2836.2
## 2 89 2731.7 1 104.51 0.065 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value goes up, so it is on the edge of significance. Basically, the evidence for an effect is much weaker.

We will only look at the estimates from the minimum pressure analysis
Disp.minpres <- deviance(mod.minpres)/df.residual(mod.minpres)
summary(mod.minpres, dispersion = Disp.minpres)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 39.30294459 6.182849986 6.356768 2.060425e-10
## GenderFMale -0.47211174 0.312899987 -1.508826 1.313432e-01
## Minpressure -0.03774036 0.006506034 -5.800825 6.598962e-09

The estimated gender effect doesn’t change, but the standard error is larger, and suggests the direction of
effect is difficult to determine. Unfortunately confint() doesn’t take a dispersion term.

Use a different distribution
Correcting the dispersion is one approach, but one disadvantage it has it that it makes predictions more
difficult. Another approach is to use a distribution that is more flexible, so that it can account for this extra
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variation. One distribution that is commonly used is the negative binomial distribution. There are several
ways of deriving the negative binomial distribution, but the one that is useful here is as a mixture of Poisson
distirbutions.

With a Poisson distribution we have a mean, λ, and this defines the distribution:
lambda <- 5
C1 <- rpois(1e4, lambda)
plot(table(C1), lwd=12, lend=3)
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But what if it varies? In particular, what if the mean is allowed to follow a chi-squared distribution?
df <- 5
# the expected value of a chi-squared is its degrees of freedom, so we divide by df to give an expected value of 1
lambda <- 5*rchisq(1e4, df)/df
C2 <- rpois(1e3, lambda)
plot(table(C2), lwd=12, lend=3)
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We see that there is more variation. This makes sense if you think that this is a mixture of Poisson
distributions, some with a mean above 5, some below.

The amount of extra variation is determined by the degrees of freedom parameter. The parameter has to be
positive.

How does the variance of the distribution change as the degrees of freedom parameter increases? Use the
code above and try different values of df.

Hint

You don’t need to plot the data each time: just use a different value of df (it has to be positive, though) and
calculate the variance of C2

Answer

Because I’m lazy, I used a function to calculate the variance, and pass different degrees of freedom to it:
CalcVar <- function(df) {
lambda <- 5*rchisq(1e4, df)/df
C <- rpois(1e3, lambda)
var(C)

}
CalcVar(1)

## [1] 55.52911
CalcVar(5)

## [1] 15.35822
CalcVar(50)

## [1] 6.153558

So we see that the variance decreases. We can look in a bit more detail using sapply() to loop over the
values. We know that the variance for this Poisson distribution is 5, so we can add that line:
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dfs <- seq(1, 101, by=5)
Variances <- sapply(dfs, CalcVar)
plot(dfs, Variances, ylim=c(0, Variances[1]))
abline(h=5)
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We can see that the variance decreases, and at about 20 is close to the variance of a Poisson distribution. In
fact, with an infinite degrees of freedom, the negative binomial is the same as a Poisson distribution.

So, now we know that we can use a negative binomial distribution to model over-dispersed count data, how
do we do it? The internal workings are a bit more complicated: if we know the degrees of freedom parameter
(which is called θ), the negative binomial distribution is a GLM. But it has to be estimated. Of couse we can
simply let the computer do the work.

We fit the model in almost the same way as we do for other GLMs, but with the glm.nb() function in the
MASS package. We need this because the function has to flip between estimating θ and fitting the GLM for
the value of θ it has estimated. It does this until the change in the likeihood get very small.
# Import the library first
library(MASS)
mod.NB <- glm.nb(Y.OD ~ X)
# Could also do this, to call the function from the library directly:
# mod.NB <- MASS::glm.nb(Y.OD ~ X)
summary(mod.NB)

##
## Call:
## glm.nb(formula = Y.OD ~ X, init.theta = 4.204813879, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.9766 -0.9204 -0.2537 0.4210 3.0093
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
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## (Intercept) 1.31943 0.02525 52.26 <2e-16 ***
## X 1.18192 0.02648 44.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(4.2048) family taken to be 1)
##
## Null deviance: 3781.3 on 999 degrees of freedom
## Residual deviance: 1050.8 on 998 degrees of freedom
## AIC: 4611.6
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 4.205
## Std. Err.: 0.365
##
## 2 x log-likelihood: -4605.598

The summary gives the same information, but also has an estimate of θ, which is 4.2, and its standard error
(0.36). If we just want θ, we can get it with mod.NB$theta, or theta.ml(mod.NB).

What happens if you fit an negative binomial distribution to the Himmicanes data? What happens with the
model comparison, and with the estimates of the gender effect and its standard error?

Hint

Fit the model with glm.mb(), use summary() to look at the parameters, and anova() to compare the models.

Negative Binomial Answer

First we can look at the values of θ
library(MASS)
NB.minpres <- glm.nb(alldeaths ~ Minpressure+GenderF, data=HimmData)
NB.Cat <- glm.nb(alldeaths ~ factor(Category)+GenderF, data=HimmData)
NB.NDAM <- glm.nb(alldeaths ~ NDAM+GenderF, data=HimmData)
NB.minpres$theta

## [1] 0.5426327
NB.Cat$theta

## [1] 0.525983
NB.NDAM$theta

## [1] 0.6835657

Regardless of which model we chose, the estimate of θ is small, suggesting overdispersion.

We can test whether Gender has an effect. Note that I have been cunning here: in the models above I put
GenderF last. because the test is sequential, the line of the anova() tests the effect of adding gender to the
model above (i.e. the model with Minpressure, Categors or NDAM). I also only show the line for gender
(which is what ["GenderF",]does: it selects that row)
anova(NB.minpres)["GenderF",]

## Warning in anova.negbin(NB.minpres): tests made without re-estimating 'theta'

## Analysis of Deviance Table
##
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## Model: Negative Binomial(0.5426), link: log
##
## Response: alldeaths
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## GenderF 1 3.7064 89 107.2 0.0542 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(NB.Cat)["GenderF",]

## Warning in anova.negbin(NB.Cat): tests made without re-estimating 'theta'

## Analysis of Deviance Table
##
## Model: Negative Binomial(0.526), link: log
##
## Response: alldeaths
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## GenderF 1 4.5457 86 107.52 0.033 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(NB.NDAM)["GenderF",]

## Warning in anova.negbin(NB.NDAM): tests made without re-estimating 'theta'

## Analysis of Deviance Table
##
## Model: Negative Binomial(0.6836), link: log
##
## Response: alldeaths
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## GenderF 1 0.63483 89 104.79 0.4256

We can see that the effect becomes much more likey to have been an effect of random error.

We will only look at the estimates from the minimum pressure analysis.
summary(NB.minpres)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 32.07171144 7.35771711 4.358922 1.307050e-05
## Minpressure -0.03013278 0.00762929 -3.949618 7.827593e-05
## GenderFMale -0.62408179 0.30964702 -2.015462 4.385626e-02

We can see that the estimated gender effect is still negative (i.e. it suggests that Male hurricanes kill fewer
people), but the standard error is wider: -1.2 to 0. This suggests the estimated effects could be between
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1.01 and 3.4 times higher with a female name. i.e. if could be huge (3 times!) or almost nothing (about 1%
higher).

More model Checking: Residuals
Now we know how to account for excess variation, we can do some more model checking, and arrive at the
punch-line of all of this. R can calculate residuals for you:
resid(mod.minpres)[1:5]

## 1 2 3 4 5
## -5.446324 -3.647283 -1.065315 -3.078851 -4.099720
resid(NB.minpres)[1:5]

## 1 2 3 4 5
## -1.2477639 -0.7570847 -0.4189013 -1.1621443 -1.8195728

We can look at them for the Himmicanes data. We’ll look at the negative binomial model, with NDAM as a
covariate (the pattern with the other covariates isn’t as obvious: take a look!)
par(mfcol=c(2,1), mar=c(4.1,4.1,1,1))
plot(log(fitted(NB.NDAM)), resid(NB.NDAM))
abline(h=0, col=2)
plot(HimmData$NDAM, resid(NB.NDAM))
abline(h=0, col=2)
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When I looked at these , I thought it looked like it might be curved.

How could we improve the model?

28



Help! Help!

Look back at the model checking week. The solutions are often similar, even if the data are a bit different.

Negative Binomial Answer

We could add a quadratic term into the model:
library(MASS)
NB.NDAM.quad <- glm.nb(alldeaths ~ NDAM + I(NDAMˆ2) + GenderF,

data=HimmData)
anova(NB.NDAM.quad)

## Warning in anova.negbin(NB.NDAM.quad): tests made without re-estimating 'theta'

## Analysis of Deviance Table
##
## Model: Negative Binomial(0.8628), link: log
##
## Response: alldeaths
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 91 194.97
## NDAM 1 67.041 90 127.93 2.659e-16 ***
## I(NDAM^2) 1 24.030 89 103.90 9.487e-07 ***
## GenderF 1 0.411 88 103.49 0.5217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now in the test, there is a large quadratic effect, and no evidence for an effect of gender.
summary(NB.NDAM.quad)

##
## Call:
## glm.nb(formula = alldeaths ~ NDAM + I(NDAM^2) + GenderF, data = HimmData,
## init.theta = 0.8628335691, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0310 -1.0656 -0.4226 0.2403 2.2692
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.558e+00 1.754e-01 8.884 < 2e-16 ***
## NDAM 1.859e-04 2.230e-05 8.335 < 2e-16 ***
## I(NDAM^2) -1.988e-09 3.584e-10 -5.547 2.91e-08 ***
## GenderFMale -1.645e-01 2.531e-01 -0.650 0.516
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.8628) family taken to be 1)
##
## Null deviance: 194.97 on 91 degrees of freedom
## Residual deviance: 103.49 on 88 degrees of freedom
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## AIC: 649.63
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.863
## Std. Err.: 0.136
##
## 2 x log-likelihood: -639.635

And the direction of the Gender effect is uncertain.

Basically, there was never a Gender effect, just a curved effect of hurricane strength. this is why you should
check your models: if you don’t, someone else might and find out you’re wrong.

Summary
You should now have some idea about the following:

• what a Poisson distribution is, and what sorts of problems it is used for
• how to fit a GLM with a Poisson distribution
• how to interpt the results of fitting a GLM with a Poisson distribution
• what over-dispersion is
• how to detect overdispersion
• how to correct for overdispersion, e.g. by fitting a model with a negative binomial distribution.
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