
Week 4: The Normal Distribution

Recap
Begin with the intro video

Click here or watch below

So far we have

• learned about maximising the likelihood
• estimated confidence intervals and standard errors

These are the basic tools we will use to fit and understand our models

More than one datum
So far we have only used one data point. But what if we have more? The standard approach starts by making
one additional assumption: that each data point is collected independently of the rest. This would mean that
each time data is collected, it doesn’t depend on what the last data point was.

If we assume that the data are independent, then from the definition of independence:

Pr(X1&X2) = Pr(X1)Pr(X2)

So, because the likelihood is the probability of each data point given the parameters, we can calculate the
likelihood for the parameters (θ) given all of the data (Xi’s) by multiplying the probabilities:

Pr(X1, X2, ..., Xn|θ) = Pr(X1|θ)Pr(X2|θ)...P r(Xn|θ) =
n∏
i=1

Pr(Xiθ)

But we usually work on the log-likelihood scale, where we have:

l(θ|X1, X2, ..., Xn) =
n∑
i=1

log(Pr(Xi|θ))

So, we just add the log-likelihoods together, which is easier than multiplying, and makes a lot of the maths
easier.

Punxsutawney Phil & Groundhog Day
Every 2nd of February, the town of Punxsutawney in the US has a ritual where they go to Gobbler’s Knob,
drag a groundhog out of the ground, call it Phil, and ask it if it sees Bill Murray’s its shadow. If Punxsutawney
Phil sees his shadow, he’ll decide to retreat, because there will be another 6 weeks of winter.

The data can be found here: https://www.math.ntnu.no/emner/ST2304/2021v/Week04/GroundhogDayta.csv
It is a .csv file and can be downloaded AND imported using read.csv() and the full url above.

The question is whether Punxsutawney Phil is actually any good at predicting the weather. We will answer
that by looking at whether he sees his shadow, and the temperature for the following 6 weeks.
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Before getting to the question of whether Phil is any good as a weatherman, we’ll look at the distribution of
the temperature. Of the 122 observations, 56 are above freezing (above 32 degrees Fahrenheit as it is the
USA). But we want to summarise the data in more detail, partly so we can ask more complicated questions
and also so we can develop the theory. We will do this with the normal distribution.

The Normal Distribution
The normal distribution looks like this:
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Or, for those who like equations, like this:
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f(x|µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2

x is the thing that follows a normal distribution (e.g. temperature). f(x|µ, σ2) is the density: a higher density
means that value of x is more likely1. We call f(x|µ, σ2) the probability density function, and use it to
calculate the probability that x is between two values (e.g. Pr(−1.96 < x < 1.96|µ = 0, σ2 = 1) = 0.95 ) The
parameters are µ and σ2: the mean and variance (sometikmes we use the standard deviation, σ, rather than
σ2, or even 1/σ2, the precision).

We can split the function up into bits. The first part is

1√
2πσ2

which does not depend on x, so is a constant. It is there because the area under the whole curve has to equal
1. More important is the second part

e−
(x−µ)2

2σ2

If we take the log transformation (so we have the log probability, or later the log likelihood) we see that it is
this

− (x− µ)2

2σ2

So is a quadratic curve, and looks like this:
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1this is not strictly correct, as P r(X = x) = 0 for a continuous density. More strictly a higher density means that an interval
around that value is more likely to contain x
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The Normal Distribution: Exercises
For these exercises you will need a few extra functions. You can find them by using source() to import and
run a script found here https://www.math.ntnu.no/emner/ST2304/2021v/Week04/NormalDistFunctions.R

Let’s look at the normal distribution, and some R functions we can use to play with it. In particular:

• rnorm() - this simulates from a normal distribution. Takes arguments: n = number of observations to
simulate, mean = mean of the normal distribution you simulate from, sd = standard deviation of the
normal distribution you simulation from.

• dnorm() - this calculates the density of a normal distribution for values x. First argument is x, then
mean. sd, and log which can = TRUE or FALSE.

• pnorm() - this calculates the cumulative density of a normal distribution for values x. This is the
probability that a random draw from the distribution would be less than x. First argument is q =
quantiles you want the probability for, then mean and sd.

• qnorm() - this calculates the values of x that would be the qth quantile. First argument is p =
probabilities you want x for, then mean and sd.

Simulate 1000 data points from a normal distribution with the same mean and standard deviation as the
temperature data, using rnorm() and plot with hist()

R help

You will need to edit this code.
MeanTemp <- mean(YOURDATA$Temperature)
sdTemp <- sd(YOURDATA$Temperature)
sim.data <- rnorm(n=5, mean = MeanTemp, sd = sdTemp)
hist(sim.data)

ANSWER
MeanTemp <- mean(GDay$Temperature)
sdTemp <- sd(GDay$Temperature)
sim.data <- rnorm(n=1000, mean = MeanTemp, sd = sdTemp)
hist(sim.data)

Histogram of sim.data
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Calculate the density data from the distribution for values using dnorm(), but for more than 4 points and
plot it with plot() - why is the density different from the probability (hint: the normal is continuous)

You might also want to use seq() to create the input for dnorm(). This will mean that the numbers are in
ascending order rather than mixed like the raw data from the question above.

R help if you need it
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# First, create a sequence of numbers to calculate the density on
At.data <- seq(min(YOURDATA$Temperature), # takes the minimum temperature value

max(YOURDATA$Temperature), # takes the maximum temperature value
length = 4) # tells R how many to have in the sequence

# create the density data
dens.data <- dnorm(At.data, mean = MeanTemp, sd = sdTemp)

# plot it
plot(x = At.data, y = dens.data, type="l")

ANSWER

The density is different to the probability for the normal distribution because it is a continuous distribution.
Therefore, the likelihood of observing any combination of observed data points for a given parameter value
is 0 because there are infinite possibilities of observed data. So, instead we take the probability density of
observed data points being between two values (often very close together).

R answers:
# First, create a sequence of numbers to calculate the density on
At.data <- seq(min(GDay$Temperature), # takes the minimum temperature value

max(GDay$Temperature), # takes the maximum temperature value
length = 10) # tells R how many to have in the sequence

# create the density data
dens.data <- dnorm(At.data, mean = MeanTemp, sd = sdTemp)

# plot it
plot(x = At.data, y = dens.data, type="l")
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Calculate the cumulative density data from the distribution for values using pnorm() and plot this.

R code:
# At.data = a sequence from min to max temperature values
cumul.data <- pnorm(At.data,

mean = MeanTemp,
sd = sdTemp)

plot(At.data, cumul.data, type="l")

ANSWER
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# At.data = a sequence from min to max temperature values
cumul.data <- pnorm(At.data,

mean = MeanTemp,
sd = sdTemp)

plot(At.data, cumul.data, type="l")
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Calculate the 2.5th, 25, 50th, 75th, and 97.5th quantiles from the distribution using qnorm()

R code:
# create vector of probabilities as input
Quantiles <- c(0.025, 0.25, 0.5, 0.75, 0.975)
# calculate quantiles
quants.data <- qnorm(Quantiles,

mean = MeanTemp, sd = sdTemp)
# plot
plot(Quantiles, quants.data, type="l")

ANSWER
# create vector of probabilities as input
Quantiles <- c(0.025, 0.25, 0.5, 0.75, 0.975)
# calculate quantiles
quants.data <- qnorm(Quantiles,

mean = MeanTemp, sd = sdTemp)
# plot
plot(Quantiles, quants.data, type="l")

0.0 0.2 0.4 0.6 0.8 1.0

26
30

34
38

Quantiles

qu
an

ts
.d

at
a

What is the difference between pnorm() and qnorm()?

I had a go at explaining it myself now I want to see the ANSWER
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pnorm() takes quantiles as an input and calculates the cumulative density function at those quantiles. It
shows the probability of having an observed value less than or equal to each quantile.

qnorm() is the inverse of pnorm(). It takes a vector of probabilities as an input and gives quantiles as an
output. i.e. it finds the value of x (our variable of interest) at a given percentile of the distribution.

There is quite a nice summary with examples here: https://www.datascienceblog.net/post/basic-
statistics/distributions/

Once you have had a go, you can watch the summary video to go through this section.

Click here or watch below

The Normal Distribution: the log likelihood
If we are modelling our data, we have observations yi, then we assume they were drawn from a normal
distribution with mean µ and variance σ2. The likeihood for this data is the probability density function
(now as a function of the parameters): the log-likelihood for a single datapoint is

l(µ, σ2|y1) = −1
2 log(2πσ

2)− (y1 − µ)2

2σ2

In practice, we can calculate this with dnorm(..., log=TRUE). If we have n data points, the likelihood for
them all is

l(µ, σ2|y1, y2, ..., yn) =
n∑
i=1

(
−1

2 log(2πσ2)− (y1 − µ)2

2σ2

)

= −1
2n log(2πσ2)− 1

2σ2

n∑
i=1

(y1 − µ)2

And we can calculate this using sum(dnorm(..., log=TRUE)).
Means <- seq(25, 35, length=500)
# sapply applies a function (here CalcNormlogLh) across a set of numbers
# (here Means)
loglhoods <- sapply(Means, CalcNormlogLh, sigma=sdTemp,

data=GDay$Temperature)
plot(Means, exp(loglhoods-max(loglhoods)), type="l",

xlab="Temperature", ylab = "log likelihood")
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This is the likelihood for µ given a guess for σ2. But we want to estimate these parameters, so we need to
maximise this likelihood with repsect to them.
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Finding the Estimate: the mean
In practice, µ̂ is more important, because we will be modelling µ as a function of different effects. First we
can calculate the likelihood for different values of µ, using the sample estimate of the standard deviation of
the data as the standard deviation of the distribution.

This code uses CalcNormlogLh() to calculate the likelihood. We create a vector of possible values of µ,
calculate the likelihood for each of these, and then plot the likeihood against their values.
Means <- seq(25, 35, length=500)
# Calcualte the normal likelihood for differnet means
# sapply() loops ove rhte vlaues of Means, and applies the CalcNormlogLh() to each one
loglhoods <- sapply(Means, CalcNormlogLh, sigma=sdTemp,

data=GDay$Temperature)
plot(Means, exp(loglhoods-max(loglhoods)), type="l",

xlab="Temperature", ylab = "log likelihood")
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You may notice that loglhoods is the log-likeihood, but we plot the likelihood, so we have to back-transform
it, using exp(loglhoods-max(loglhoods)). This is the same as likelihood/(maximum likelihood), so
we are just scaling the y-axis. if we don’t do this, we can get numerical problems: the largest value of the
log-likelihood is -320.66, which give a likelihood of 5.5090705× 10−140.

Given this, we can estimate the maximum likelihood estimate with
max(loglhoods)

## [1] -320.6555

Means[loglhoods==max(loglhoods)]

## [1] 31.45291

In the second line loglhoods==max(loglhoods) tests whether each value of loglhoods equals the maximum
value.

Deriving the m.l.e for µ

But we can do better than this: we can find the maximum with a bit of maths. We want to maximise the
likelihood in the same way we did for p for the binomial distribution by doing this:

• calculate the slope
• set the slope to 0

– we should really check that it is the maximum, not minimum
• find the parameter where the slope is 0: that is the m.l.e.

Our log-likelihood is
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l(µ, σ2|y1, y2, ..., yn) = −1
2nlog(2πσ

2)−
n∑
i=1

(y1 − µ)2

2σ2

We can ignore the − 1
2nlog(2πσ

2), because it does not involve µ. And we can re-arrange the sum:

l(µ, σ2|y1, y2, ..., yn) = −
n∑
i=1

(y1 − µ)2

2σ2

= − 1
2σ2

n∑
i=1

(y2
i − 2yiµ+ µ2)

= − 1
2σ2

(
n∑
i=1

y2
i − 2µ

n∑
i=1

yi + nµ2

)
If we differentiate with respect to µ and set that slope to zero we get

0 = 1
2σ2

(
2

n∑
i=1

yi − 2nµ
)

Which we can re-arrange so the MLE is

µ̂ =
∑n
i=1 xi
n

The sample mean! And it doesn’t depend on σ2.

The MLE for σ2

This is usually less important. We are generally not interested in the standard deviation, but it is a parameter
of the distribution, so it has to be estimated. What we do is differentiate with respect to σ2, set to zero,
re-arrange, and get

σ̂2 = 1
n

n∑
i=1

(xi − µ̂)2

For details, you can do it yourself or follow the proof at the StatLect site.

The estimate µ̂ is just the sample mean, and σ̂2 is the sample variance.

These two statistics can be used to summarise the whole distibution. Note that the denominator for the
estimate of σ̂2 is n, not n− 1. But nobody actually uses this: it assumes the MLE for µ̂ is the true value,
but in reality we do not know the true value of µ, so it turns out that using (n− 1) is better because it takes
into account the uncertainty

Confidence Intervals
This next video is a bit long. It tries to put the maximum likelihood estimation in the context of modelling
and explain how all of the different things we have covered so far link together. Hopefully it is helpful.

Click here or watch below

We can simulate data and calculate the likelihood for different values of the mean (we will fix the standard
deviation for now).

We can look at the distribution of µ̂, and (for example) estimate confidence intervals:
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You will need to download and source the script
# Simulate data sets with mean 1 (mu in function below), standard deviation 2 (sigma in function below) and 10 data points (N in the function)
# For each one calculate the MLE for the mean
Sims <- SimNormMeans(mu=1, sigma=2, N=10, NReps = 10000)
hist(Sims)
quantile(Sims, c(0.025, 0.975))

Use this to simulate the Punxsutawney temperature data to estimate the mean temperature and its 95%
confidence interval. To do this you should:

• estimate the MLEs for µ and σ2

• Use these and SimNormMeans() to simulate replicate data (with the same number of data points as in
the original data), and estimate the means of each simulated data set

• from the distribution of estimated means, calculate the 95% confidence interval (using the quantiles of
the distribution)

Use the code above as a basis for this but use R hints if you get stuck.

R help if you need it

First, find MLE for µ and σ2 for the Punxsutawney temperature data.

It says above that you find these by taking the mean and variance of x, respectively. In this case, x is
temperature data from Punxsutawney.

You can do this in R using the functions mean() and var().

Second, use the SimNormMeans() function to simulate repeat data collection of the temperature, pick a high
number of repeat samples e.g. 1000-10000. (Too high will take too long). For this part, you need one extra
bit of information: argument N, which is the number of data points. This needs to match the number in the
original data.

Remember: although σ2 is the parameter we wanted the MLE for, SimNormMeans() takes the
input σ. So take the square root of σ2 using sqrt() to get σ.

You can find this using length() e.g.
N = length(YOURDATA$Temperature)

SimNormMeans() will calculate the mean for you.

Third, use the quantile function like the example above to get a 95% confidence interval.

ANSWER
# Find MLE estimates of mean and variance
mu <- mean(GDay$Temperature)
sigma2 <- var(GDay$Temperature)
sigma <- sqrt(sigma2)

# Find number of data points
N <- length(GDay$Temperature)

MySims <- SimNormMeans(mu=mu, sigma=sigma, N=N,
NReps = 10000)

# Plot the results of the simulation (yours will be a bit different)
hist(MySims,

xlab = "Mean of simulated data",
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ylab = "Frequency",
main = "Simulated results")
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# Get confidence intervals
quantile(MySims, c(0.025, 0.975))

## 2.5% 97.5%
## 30.85480 32.04945

Your answers will not be exactly the same (simulations are random)! But should be close.

The distribution of µ̂

We could use the simulations whenever we want to calculate the confidence intervals, but instead we can rely
on some beer-inspired mathematics. It turns out that the distribution of µ̂ is a t-distribution.

So, we can calculate the density, quantiles etc. in the same way we did for the normal distribution:
dt(x=0.5, df=5)

## [1] 0.3279185

pt(q=1.5, df=5)

## [1] 0.9030482

qt(p=0.7, df=5)

## [1] 0.5594296

rt(n=2, df=5)

## [1] -0.4002121 -1.1594407
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The t-distribution has a parameter, called df, which is there ‘degrees of freedom’, and is roughly the amount
of information in the distribution.

“But what about the mean and variance?” you’re thinking. Well, what we have above is the standard
t-distribution. Recall that for the normal distribution we can calculate this:

z = x− µ
σ

and z follows a normal distirbution with mean 0 and variance 1. If we do the same transformation and x
follows a t distribution, z follows a standard t distribution.

So, to calculate the confidence interval for our mean, we can use the same approach as we use for the normal
distribution. For the normal distribution, the interval is the mean plus/minus 1.96 times the standard error.
We use 1.96 because that is the 97.5% quantile of the standard normal distribution (and -1.96 is the 2.5%
quantile). So, we can just replace ±1.96 with the relevant quantiles. We call the qˆth quantile tν(q), where ν
is the degrees of freedom. For the mean of the normal distribution this is n− 1, where n is the sample size:

(µ̂+ tn−1(0.025) σ̂√
n
, µ̂+ tn−1(0.975) σ̂√

n
)

# Use this function to calculate the confidence interval for the mean.
# This is a trivial example, doing it for the numbers 1 to 5
CalcNormalMeanCI(1:5)

If we have enough data, this distribution look like a normal distribution

Calculate the 95% confidence interval for the mean of the Punxsutawney temperature data.

ANSWER

Use the code from above and plug in the temperature data.
# Use this function to calculate the confidence interval for the mean.
CalcNormalMeanCI(GDay$Temperature)

## [1] 30.85348 32.05488

These answers should be the same because there are no simulations, it is observed data.

How the amount of data affects confidence intervals
Those of you who are comfortable with mathematics might be able to work out from the equations how the
confidence intervals are affected by the sample size (hint: look at the the standard error). For the rest of
you. . .

Simulate data with the same mean & standard deviation as the Groundhog Day data, but with different
sample sizes: 10, 100 and 100 data points. For each of these calculate the confidence intervals. How do they
change as the sample size increases?

To do this you should use rnorm() for the simulation. With n = number of observations, mean = mu, sd =
sigma.

Then use CalcNormMeanCI().

ANSWER
MySims10 <- rnorm(n = 10,

mean=mean(GDay$Temperature),
sd=sd(GDay$Temperature))

MySims100 <- rnorm(n = 100,
mean=mean(GDay$Temperature),
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sd=sd(GDay$Temperature))

MySims1000 <- rnorm(n = 1000,
mean=mean(GDay$Temperature),
sd=sd(GDay$Temperature))

# Get confidence intervals
CalcNormalMeanCI(MySims10)

## [1] 29.35147 32.80877

CalcNormalMeanCI(MySims100)

## [1] 30.45799 31.78492

CalcNormalMeanCI(MySims1000)

## [1] 31.53963 31.95947

Your results will not be the same because each simulation is random, but you should see the confidence
interval gets narrower as we get more observations (higher sample size).

(Optional) If you want to some more advanced coding, calculate the standard errors for different sample sizes,
and plot the standard error against sample size.

ANSWER

To do this, you need to create your own function to calculate the standard error. Then apply it to your
simulated datasets above and then plot the result.

The standard error =
σ̂√
n

# Function
SECalc <- function(x){

# calculate sigma (standard deviation)
sigma <- sd(x)
# find number of data points and take squareroot
n <- sqrt(length(x))

# calculate SE

SE <- sigma/n

return(SE)
}

# try it out on simulated data

SECalc(MySims10)

## [1] 0.8054954

SECalc(MySims100)

## [1] 0.3360558

SECalc(MySims1000)
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## [1] 0.1070273

Again, your answers won’t be the same as mine but you should see a pattern of the SE getting smaller as the
sample size increases.

Predicting the End of Winter
So far we have been learning about statistical inference and statisical programming. Now we can start to
use this in modelling. We will start with a simple model (a t-test), but put it in the context of maximum
likelihood.

The legend is that if Punxsutawney Phil sees his shadow, there will be 6 more weeks of winter. So if he is
good at predicting winter, we should see lower average temperatures in the 2 months after the prediction.

The Modelling
What would we expect if Punxsutawney Phil can predict winter, and if he cannot? Draw some pictures - you
don’t need to be too precise.

25 30 35 40

?No
Shadow

Shadow

Phil can't predict weather

20 25 30 35 40

?
Phil can predict weather

Mean Temperature,  ° F

ANSWER

If Phil cannot predict winter, you would expect to see no difference in the temperature when Phil can see his
shadow or not.

If Phil can predict winter, you would expect temperatures to be colder when he can see his shadow and
warmer when he cannot. I.e you expect to see a difference.

We have to build a model where there are different mean temparatures when he does see his shadow, and
when he does not.

We can do this in a few ways, but here we will assume yi ∼ N(µi, σ2) (i.e. the data follow a normal distribution
with the same variance). We also will define a covariate Xi: Xi = 1 if Phil saw his shadow (and hence
predicted winter),Xi = 0 if he did not.
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The core of the modelling is µi. We are asking whether it depends on Xi. We can write the model like this:

µi =
{
β0 if Xi = 0
β1 if Xi = 1

30 35 40 45 50 55

β0

β1

No
Shadow

Shadow

If the legend is correct, then µi is smaller when Xi = 1. Thus, we are interested in the difference between β0
and β1. So it makes more sense to focus on that:

µi =
{
α if Xi = 0
α+ β if Xi = 1

The difference is β, and this is what we are interested in, in particular whether it is 0.

15



30 35 40 45 50 55

α

α + β
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Shadow

Shadow

We can also write the model as µi = α+ βXi. The difference is β (because Xi can only be 0 or 1). Although
this seems a bit indirect, it is the easiest to extend to more complex models, as we will see later in teh course.

Calculating the Likelihood
The log-likelihood is not too difficult to write down

logL(µi, σ|x1, ..., xn) = C − 1
2σ2

n∑
i=1

(xi − µi)2

where mui is described above. We now have 3 parameters (two for the means, and the standard deviation).
We can look at the likelihood for the difference, using the MLEs for the other parameters.
# Use this function to simulate the MLE for the difference between 2 groups.
# XX is an indicator (0 or 1) for which group the data is in
# YY is the data (e.g. temperature)
# nSims should be set to be much larger than 5
SimttestLhood(XX=GDay$Shadow, YY=GDay$Temperature, nSims=5)

Run more than 5 simulations and look at the likelihood for the difference. What is the mean and the 95%
confidence interval?

ANSWER
# Use this function to simulate mean differences between 2 groups
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# This will give 100 simulated datasets

SimDifferences <- SimttestLhood(XX=GDay$Shadow,
YY=GDay$Temperature,
nSims=100)

# Look at the simulated mean differences

hist(SimDifferences)

Histogram of SimDifferences
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# Calculate confidence intervals using quantile function

quantile(SimDifferences, c(0.025, 0.975))

## 2.5% 97.5%
## -1.335984 2.053809

t-tests In Practice
In practice, we don’t need to simulate the likeihood as a student has already done the maths for us. It turns
out that the difference also follows a t-distribution. And R has functions to do the calculations for us:
t.test(GDay$Temperature[GDay$Shadow], GDay$Temperature[!GDay$Shadow], var.equal = TRUE)

There is much more about this in Chapter 3 of A New Stats with R.

• what is the estimate of the difference in temperature between when Phil sees his shadow and when he
does not?

• what is the confidence interval?
• how sure can you be about the direction of any difference? And how large could a difference be?
• do you think Punxsutawney Phil can predict whether there will be another 6 weeks of winter?
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ANSWER

This takes a few steps. First, run the t-test, it will print a result.

Read the result carefully to find the information you need.
# Run t-test

t.test(GDay$Temperature[GDay$Shadow], GDay$Temperature[!GDay$Shadow], var.equal = TRUE)

##
## Two Sample t-test
##
## data: GDay$Temperature[GDay$Shadow] and GDay$Temperature[!GDay$Shadow]
## t = 0.46769, df = 120, p-value = 0.6409
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.224467 1.981842
## sample estimates:
## mean of x mean of y
## 31.51937 31.14068

# Find the difference

31.51937 - 31.14068

## [1] 0.37869

The output does not directly show the difference but you can calculate it from the means of x and y which
are shown at the bottom of the output. Here it is a difference of 0.37869 degrees Fahrenheit.

To work out the direction, you need to know which group is which. In this case, Shadow = TRUE is the
higher mean. So, when Phil sees his shadow, the temperature is 0.37869 degrees warmer than when he
doesn’t.

The 95% confidence interval is -1.22 to 1.98, which spans 0. Therefore, you cannot be sure of any direction of
difference. It could be as low as over -1 and up to +2 (for the most plausible range).

As a result, I do not think Phil can predict the end of winter (sorry Phil).

Finish with Video 4

Click here or watch below
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https://ntnu.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=75f68d0f-5990-4a30-857f-acc300a782f2

	Recap
	More than one datum
	Punxsutawney Phil & Groundhog Day
	The Normal Distribution
	The Normal Distribution: Exercises
	The Normal Distribution: the log likelihood
	Finding the Estimate: the mean
	Deriving the m.l.e for \mu

	The MLE for \sigma^2
	Confidence Intervals
	The distribution of \hat{\mu}
	How the amount of data affects confidence intervals
	Predicting the End of Winter
	The Modelling
	Calculating the Likelihood
	t-tests In Practice

