ST2304 - Statistical Modelling for Biologists/Biotechnologists

Bob O'Hara

bob.ohara@ntnu.no

This week we will...

Start the course

- admin
- try to motivate you
- overview of the course
- Start learning R
 - introduction
 - hands-on work

(we will deal with these in more detail later)

- Reference Group
- Blackboard

web page: https://www.math.ntnu.no/emner/ST2304/2023v/

How the Course Will Run: Modules

One module a week

Modules on web pages

- text
- exercises (with hints)
- short recorded lectures

Active Learning, Group work, Problem solving

How the Course Will Run: Contact time

Any announcements at the start

In effect everything will be exercise sessions in groups

- "Lectures" mainly for the modules
- Exercise session will be mainly for the exercises

(but feel free to ignore these)

Work in groups, ask for help when you want it.

Assessment

Complete 8 exercise sets (of about 10)

- do in groups
- pass/fail
- first couple of weeks won't count
 - we will tell you when they start to count

Virtual or in Person?

https://www.menti.com/al6sim51dgx9

Teachers

Me

Bert van der Veen

TA: Kenneth Aase

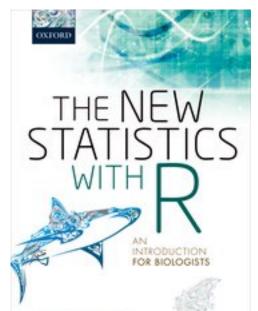
Resources

Blackboard

- announcements
- links to more material
- exercises

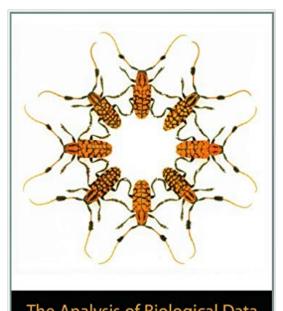
Discussion board on Discourse:

https://mattelab2023v.math.ntnu.no/c/st2304/52

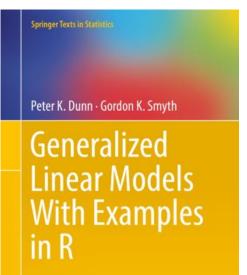

Web page: https://wiki.math.ntnu.no/st2304/2023v/start (this includes other links from this presentation)

modules

Text books


Text Books

New Statistics with R - Andy Hector


Text Books

The Analysis of Biological Data - Whitlock & Schluter

Text Books

Generalized Linear Models With Examples in R - Dunn & Smyth

Other Resources

Blackboard

Discourse

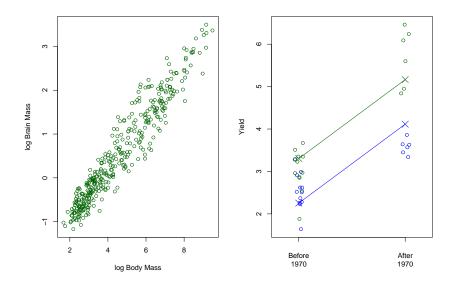
Wiki

Google (yes, use it!)

Recap: why do we we use statistics in biology

What do you remember from ST0103?

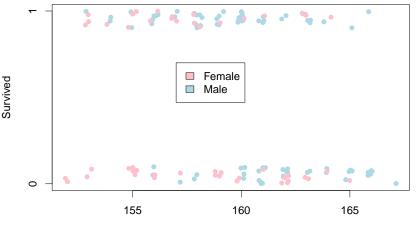
Discuss in groups,


- Come up with 3 topics you learned about, and for each give an example where they are used in biology (or biotechnology!)
- Add the topics to TaskCard: https://ntnu.taskcards.app/#/board/448a3a68-62df-4a5a-9820-0d03428d06fb

.

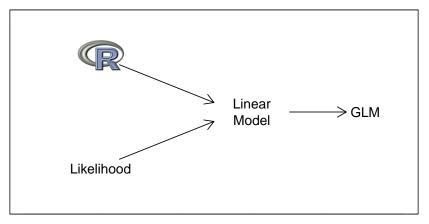
We want you to be able to analyse your own data (and understand what you are doing!)

- fit the right models to data
- assess if the model is any good
- compare models and decide which is 'best'
- interpret the models


Types of model I: Linear models (regression, ANOVA)

Types of model I: Generalised Linear models

When things aren't normal


- binary (e.g. survive/died)
- counts (e.g. how many sparrows are there?)

Total Length (mm)

How do we get there?

Need some theory (likelihood) and to know how to write the models in the computer (R) $% \left(R\right) =0$

Then can start modelling. linear models is complicated regression GLMs are complicated linear models

Likelihood

The statistical framework to do this

 ${\sf Likelihood} = {\sf probability} \ {\sf of} \ {\sf the} \ {\sf data}$

means we can write everything as probabilities

The stats package we will use

free, most commonly usedmore shortly

Course Structure

Weeks 1-3: Likelihood and R

- statistical theory, and programming
- the background you will need to understand what follows, and to do it

Weeks 4-10: Linear models (regression, ANOVA)

fitting straight lines

Weeks 11-13: Generalised Linear models

fitting straight lines to different types of data