
Statistical Inference: Uncertainty About One
Parameter



Recap of Last Week

We tossed a beach ball around

We saw land 6 times and sea 7

The second time we saw land 7 times and sea 6

We want to estimate the proportion of land



Recap of Last Week

We saw that there would be variation when we replicate the
experiment
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Recap of Last Week

We can estimate the proportion by

▶ building a model
▶ finding the parameters that are model likely to give the data

This is the maximum likelihood estimate

▶ maximise Pr(Data;parameters) with respect to the parameters



Recap of Last Week

For this problem we can maximise the likelihood analytically
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This week

How good is our estimate?

We saw last week that different values of p can give the same data
p=0.2
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Outline

Repeated sampling of data

Summarising the variation in the resamples - confidence intervals

What is a confidence interval?

Asymptotics: approximations when the numbers are big

Standard errors



The Question

Because different samples give different estimates, we want to
quantify this - suggest plausible values

What summaries could we use?

(What summaries do we use for simple statistics?)



Simulating the Sampling Distribution

From our data, we have our estimate of p (which we call p̂)

If this is the true value, what values are we likely to estimate?



What to do

Simulate the data. For each simulation calculate p̂, the
maxmimum likelihood estimate of p.

Look at the histogram of the distribution

▶ code on next 2 slides



Simulations of the sampling distribution
We know that the MLE for p is r/N, e.g. Land/(Land + Sea), so
we can calculate it from the simulations: the web link is
“https://www.math.ntnu.no/emner/ST2304/2024v/Module02/
Module02Functions.R”

source("https://www.math.ntnu.no/emner/ST2304/2024v/Module02/Module02Functions.R")
sim <- simGlobe(probability=0.4, NTrials=10, nSims = 300)
hist(mleGlobe(sim["Land",], NTrials = 10),

xlab=expression(hat(p)), main="")
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How can we summarise the distribution?

Can we give a range of probable values?



Confidence Intervals

We can give an interval within which we think we would see the
sample statistic

▶ the confidence interval
▶ usually use 95%



Confidence Intervals
For continuous data the 95% confidence interval is constructed like
this
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Confidence Intervals

Your task: try to calculate an approximate 95% confidence interval
for your data

Your task: follow the "Constructing a Confidence interval" section

(for discrete data it is a bit more difficult to get an exact interval)



Confidence Intervals and Quantiles I
There are a few ways to calculate confidence intervals. One way is
to sort the numbers from lowest to highest

SimDist1k <- simGlobe(probability=0.4,
NTrials=1e3,
nSims = 1e3)["Land",]

sort(SimDist1k)[1:10]

## [1] 357 360 361 362 363 363 363 364 364 365

and then take the values that are 2.5% of the way from the
bottom, and 2.5% of the way from the top:

sort(SimDist1k)[c(0.025*length(SimDist1k),
0.975*length(SimDist1k))]

## [1] 368 431



Confidence Intervals and Quantiles II
The values 2.5% of the way from the bottom, and 2.5% of the way
from the top are called quantiles, specifically the 2.5% and 97.5%
quantiles.

A x% quantile is a values of a distribution with x% of the
distribution less than it

▶ a median is the 50% quantile
▶ the 25% and 75% quantiles are called quartiles (they plus the

median split the data into 4 quarters)

So, we can just need the 2.5% and 97.5% quantiles. There is a
function in R to do this:

quantile(SimDist1k, c(0.025, 0.975))

## 2.5% 97.5%
## 368 431



Confidence Intervals and Quantiles: Your tasks

Your task: follow the "Confidence Intervals and Quantiles" section



OK, so what, exactly, is a confidence interval?
A confidence interval is an interval that will contain a population
parameter a specified proportion of the time.
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i.e. if we repeatedly sample the same population, 95% of
confidence intervals will include the “true” parameter Your task:
follow the "What, exactly, is a confidence interval?" section



Confidence Intervals with more data

Now imagine that rather than 10 trials, you have 1000. As before,
you see 40% of the observations are land (i.e. 400 out of 1000)

# 1e3 = 1x10ˆ3 = 1000
sim <- simGlobe(probability=0.4, NTrials=1e3, nSims = 3)

Try to find a 95% confidence interval for this

Basically, we want to remove the outer 2.5% of values, and see
what is left.



Confidence Intervals with more data

Your task: follow the "Confidence Interval for a Binomial with
differnet Ns" section

What are the differences in the confidence intervals?

▶ in their size
▶ in how well they cover 95% of the sampling distribution



Asymptotic Confidence Intervals

In statistics, large numbers usually make things much nicer: there
are a lot of asymptotic results (i.e. approximations that work well
when there is a lot of data).

One of these is the that most sampling distributions of statistics
look like normal distributions, with enough data.

So, if we can construct a normal distribution’s CI, we can make an
approximation.



Normal Confidence Intervals

We can calculate a normal confidence interval like this:

c(qnorm(0.025, mu, sigma), qnorm(0.975, mu, sigma))

The parameters are the mean and standard deviation, e.g.

## [1] -5.839856 9.839856



Normal Approximations

If we know the mean and standard deviation of the sampling
distribution, then we can use a normal approximation.

▶ the standard deviation of the sampling distribution is called
the standard error



Normal Approximation for the Binomial

We can use the MLE, p̂ as the mean of the normal

The standard error for the binomial distribution is

√
p(1 − p)

N



Approximatioms: Your tasks

Your task: follow the "Approximations" section



How well are we doing?

With small N, we cannot usually get a perfect 95% confidence
interval, because the possible estimates are discrete
(0/N, 1/N, ..., N/N), so our interval might be slightly smaller or
larger

Asymptotic intervals may not be perfect either, although they
should get better as N increases

Your task: follow the "How well are we doing?" section



Standard Errors

We used the standard error to calculate the asymptotic
confidence. But we could use it to summarise the uncertainty in a
single parameter

Standard Deviations of Statistics: s

Binomial variance of n: Var(n|N, p) = Np(1 − p)

Our statistic: n/N

Var(n/N) = 1/N2Var(n) = p(1 − p)/N

Standard error:

s =
√

p(1 − p)/N



Standard Errors: Your Turn

Guess what?

Your task: follow the "Standard Errors " section



Exercise Hand-in

▶ Form groups: sign up to BB
▶ ONE hand-in per group
▶ Deadline: 3rd of February (ish)


