DEFINITION Limit of a Sequence

We say that the sequence $\{a_n\}$ converges to the real number L, or has the limit L and we write

$$\lim_{n\to\infty}a_n=L,\tag{4}$$

provided that a_n can be made as close to L as we please merely by choosing n to be sufficiently large. That is, given any number $\epsilon > 0$, there exists an integer N such that

$$|a_n - L| < \epsilon$$
 for all $n \ge N$.

If the sequence $\{a_n\}$ does *not* converge, then we say that $\{a_n\}$ diverges.

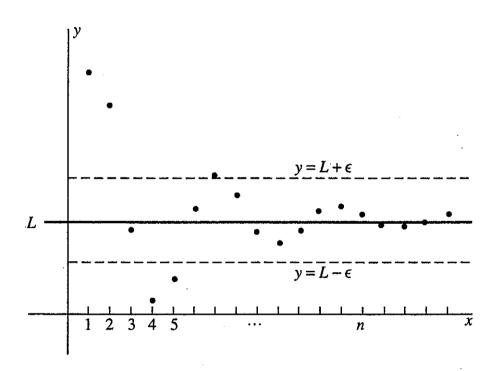


FIGURE 11.2.1 The point (n, a_n) approaches the line y = L as $n \to +\infty$.

THEOREM 1 Limit Laws for Sequences

If the limits

$$\lim_{n\to\infty} a_n = A \quad \text{and} \quad \lim_{n\to\infty} b_n = B$$

exist (so A and B are real numbers), then

- 1. $\lim_{n\to\infty} ca_n = cA$ (c any real number);
- $\lim_{n\to\infty}(a_n+b_n)=A+B;$
- $3. \quad \lim_{n\to\infty} a_n b_n = AB;$
- $4. \quad \lim_{n\to\infty}\frac{a_n}{b_n}=\frac{A}{B}.$

THEOREM 2 Substitution Law for Sequences

If $\lim_{n\to\infty} a_n = A$ and the function f is continuous at x = A, then

$$\lim_{n\to\infty}f(a_n)=f(A).$$

THEOREM 3 Squeeze Law for Sequences

If $a_n \leq b_n \leq c_n$ for all n and

$$\lim_{n\to\infty}a_n=L=\lim_{n\to\infty}c_n,$$

then $\lim_{n\to\infty} b_n = L$ as well.

THEOREM 4 Limits of Functions and Sequences

If $a_n = f(n)$ for each positive integer n, then

$$\lim_{x \to \infty} f(x) = L \quad \text{implies that} \quad \lim_{n \to \infty} a_n = L.$$

The sequence $\{a_n\}_1^{\infty}$ is said to be increasing if

$$a_1 \leq a_2 \leq a_3 \leq \cdots \leq a_n \leq \cdots$$

and decreasing if

$$a_1 \geq a_2 \geq a_3 \geq \cdots \geq a_n \geq \cdots$$

The sequence $\{a_n\}$ is **monotonic** if it is either increasing or decreasing. The sequence $\{a_n\}$ is **bounded** if there is a number M such that $|a_n| \leq M$ for all n.

Bounded Monotonic Sequence Property

Every bounded monotonic infinite sequence converges—that is, has a finite limit.

Oppowe:

UNDERSOR OM FOLGEN

KONUERGERER, OG FINN EVENTUELT GRENSEN

DEFINITION The Sum of an Infinite Series

We say that the infinite series

$$\sum_{n=1}^{\infty} a_n$$
 converges (or is convergent)

with sum S provided that the limit of its sequence of partial sums,

$$S=\lim_{n\to\infty}S_n,$$

exists (and is finite). Otherwise we say that the series diverges (or is divergent). If a series diverges, then it has no sum.

Thus the sum of an infinite series is a limit of finite sums,

$$S = \sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n,$$

provided that this limit exists.

DEFINITION Geometric Series

The series $\sum_{n=0}^{\infty} a_n$ is said to be a **geometric series** if each term after the first is a fixed multiple of the term immediately before it. That is, there is a number r, called the **ratio** of the series, such that

$$a_{n+1} = ra_n$$
 for all $n \ge 0$.

THEOREM 1 The Sum of a Geometric Series

If |r| < 1, then the geometric series in Eq. (5) converges, and its sum is

$$S = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$$

If $|r| \ge 1$ and $a \ne 0$, then the geometric series diverges.

THEOREM 2 Termwise Addition and Multiplication

If the series $A = \sum a_n$ and $B = \sum b_n$ converge to the indicated sums and c is a constant, then the series $\sum (a_n + b_n)$ and $\sum ca_n$ also converge, with sums

$$1. \sum (a_n + b_n) = A + B;$$

2.
$$\sum ca_n = cA$$
.

THEOREM 3 The nth-Term Test for Divergence

If either

$$\lim_{n\to\infty}a_n\neq 0$$

or this limit does not exist, then the infinite series $\sum a_n$ diverges.

THEOREM 4

The harmonic series diverges.

THEOREM 5 Series that Are Eventually the Same

If there exists a positive integer k such that $a_n = b_n$ for all n > k, then the series $\sum a_n$ and $\sum b_n$ either both converge or both diverge.

THEOREM 1 The *n*th-Degree Taylor Polynomial

Suppose that the first n derivatives of the function f(x) exist at x = a. Let $P_n(x)$ be the nth-degree polynomial

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

THEOREM 2 Taylor's Formula

Suppose that the (n+1)th derivative of the function f exists on an interval containing the points a and b. Then

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^{2} + \frac{f^{(3)}(a)}{3!}(b-a)^{3} + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^{n} + \frac{f^{(n+1)}(z)}{(n+1)!}(b-a)^{n+1}$$

for some number z between a and b.

THE MEAN VALUE THEOREM

Suppose that the function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Then

$$f(b) - f(a) = f'(c) \cdot (b - a)$$

for some number c in (a, b).

