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An analogy is a shallow form of metaphor. It just asserts that two things
are similar. Although simple, analogies can be a great help in accepting ab-
stract concepts. When you travel from home to school, at first you are closer
to home, and then you are closer to school. Somewhere there is a halfway
stage in your journey. You know this, long before you study mathematics.
So when a curve connects two points in a metric space (Chapter 2), you
should expect that as a point “travels along the curve,” somewhere it will
be equidistant between the curve’s endpoints. Reasoning by analogy is also
referred to as “intuitive reasoning.”

Moral Try to translate what you know of the real world to guess what is
true in mathematics.

Two pieces of advice

A colleague of mine regularly gives his students an excellent piece of advice.
When you confront a general problem and do not see how to solve it, make
some extra hypotheses, and try to solve it then. If the problem is posed in n
dimensions, try it first in two dimensions. If the problem assumes that some
function is continuous, does it get easier for a differentiable function? The
idea is to reduce an abstract problem to its simplest concrete manifestation,
rather like a metaphor in reverse. At the minimum, look for at least one
instance in which you can solve the problem, and build from there.

Moral If you do not see how to solve a problem in complete generality,
first solve it in some special cases.

Here is the second piece of advice. Buy a notebook. In it keep a diary of
your own opinions about the mathematics you are learning. Draw a picture
to illustrate every definition, concept, and theorem.

2 Cuts

We begin at the beginning and discuss R = the system of all real num-
bers from a somewhat theological point of view. The current mathematics
teaching trend treats the real number system R as a given — it is defined
axiomatically. Ten or so of its properties are listed, called axioms of a com-
plete ordered field, and the game becomes: deduce its other properties from
the axioms. This is something of a fraud, considering that the entire struc-
ture of analysis is built on the real number system. For what if a system
satisfying the axioms failed to exist? Then one would be studying the empty
set! However, you need not take the existence of the real numbers on faith
alone — we will give a concise mathematical proof of it.

It is reasonable to accept all grammar school arithmetic facts about

The set N of natural numbers, 1, 2, 3,4, ....

The set Z of integers, 0, 1, —1, -2, 2, .. ..

The set Q of rational numbers p/q where p, g are integers, g # 0.
For example, we will admit without question facts like 2 + 2 = 4, and
laws like @ + b = b + a for rational numbers a, b. All facts you know
about arithmetic involving integers or rational numbers are fair to use in
homework exercises too. It is clear that N € Z ¢ Q. Now Z improves N
because it contains negatives and (Q improves Z because it contains recipro-
cals. Z legalizes subtraction and QQ legalizes division. Still, Q needs further
improvement. It doesn’t admit irrational roots such as 4/2 or transcendental
numbers such as 7. We aim to go a step beyond Q, completing it to form
R so that

NcZcQcR.

As an example of the fact that QQ is incomplete we have

1 Theorem No number r in Q has square equal to 2; i.e., /2 ¢ Q.

Proof To prove that every r = p/q has r? # 2 we show that p? # 242
It is fair to assume that p and g have no common factors since we would
have canceled them out beforehand. Two integers without common factors
can not both be even, so at least one of p, ¢ is odd.
Case 1. p is odd. Then p? is odd while 2¢? is not. Therefore p? # 242.
Case 2. p is even and q is odd. Then p? is divisible by 4 while 242 is not.
Therefore p? # 2q2. O

The set @ of rational numbers is incomplete. It has “gaps,” one of which
occurs at +/2. These gaps are really more like pinholes; they have zero
width. Incompleteness is what is wrong with Q. Our goal is to complete Q
by filling in its gaps. An elegant method to arrive at this goal is Dedekind
cuts in which one visualizes real numbers as places at which a line may be
cut with scissors. See Figure 3.

Definition A cut in @ is a pair of subsets A, B of Q such that
(a) AUB=Q,A#0,B#0B,ANB=40.
(b) fac Aand b € B thena < b.
(c) A contains no largest element.

1 A subtler fact that you may find useful is the prime factorization theorem mentioned above. Any
integer > 2 can be factored into a product of prime numbers. For example, 120 is the product of primes
2.2-2.3.5. Prime factorization is unique except for the order in which the factors appear. An easy
consequence is that if a prime number p divides an integer k and if k is the product mn of integers then
p divides m or it divides n. After all, by uniqueness, the prime factorization of & is just the product of
the prime factorizations of m and n.



Figure 3 A Dedekind cut.

A is the left-hand part of the cut and B is the right-hand part. We denote
the cut as x = A|B. Making a semantic leap, we now answer the question
“what is a real number?”

Definition A real number is a cut in Q.

R is the class' of all real numbers x = A|B. We will show that in a
natural way R is a complete ordered field containing Q. Before spelling out
what this means, here are two examples of cuts.

() AIBB={reQ:r<1}|{{reQ:r>1}.

(i) AIB={reQ:r<0orr><2}[{reQ:r>0andr?>2}.

It is convenient to say that A|B is a rational cut if it is like the cut in
(1): for some fixed rational number c, A is the set of all rationals < ¢ while
B is the rest of Q. The B-set of a rational cut contains a smallest element
¢, and conversely, if A|B is a cut in Q and B contains a smallest element ¢
then A|B is the rational cut at c. We write ¢* for the rational cut at ¢. This
lets us think of Q C R by identifying ¢ with c¢*. It is like thinking of Z as
a subset of Q since the integer n in Z can be thought of as the fraction n/1
in Q. In the same way the rational number ¢ in Q can be thought of as the
cut at c. It is just a different way of looking at c. It is in this sense that we
write

NCZcQcR.

There is an order relation x < y on cuts that fairly cries out for attention.

¥ The word “class” is used instead of the word “set” to emphasize that for now the members of R
are set-pairs A| B, and not the numbers that belong to‘A or B. The notation A|B could be shortened to
A since B is just the rest of Q. We write A|B, however, as a mnemonic device. It looks like a cut.

Definition The cut x = A|B is less than or equal to the cut y = C|D if
AcCC.

We write x < y if x is less than or equal to y and we write x < yifx < y
and x # y. If x = A|B is less than y = C|Dthen A C Cand A # C,
so there is some ¢y € C \ A. Since the A-set of a cut contains no largest
element, there is also a ¢; € C with ¢p < cy. All the rational numbers ¢
with cg < ¢ < ¢, belong to C \ A. Thus, x < y implies that not only is
C \ A non-empty, but it contains infinitely many elements.

The property distinguishing R from Q and which is at the bottom of
every significant theorem about R involves upper bounds and least upper
bounds; or equivalently, lower bounds and greatest lower bounds.

M € R is an upper bound for a set § C R if each s € § satisfies

s< M.

We also say that the set S is bounded above by M. An upper bound for S
that is less than all other upper bounds for S is a least upper bound for S.
The least upper bound for S is denoted 1.u.b. (S). For example,

3 is an upper bound for the set of negative integers.

—1 is the least upper bound for the set of negative integers.

1 is the least upper bound for the set

xeQ:3IneNandx =1-1/n).

—100 is an upper bound for the empty set.
A least upper bound for § may or may not belong to S. This is why you
should say “least upper bound for S” rather than “least upper bound of S.”

2 Theorem The set R, constructed by means of Dedekind cuts, is complete’
in the sense that it satisfies the Least Upper Bound Property:

If § is a non-empty subset of R and is bounded above
then in R there exists a least upper bound forS.

Proof Easy! Let € C R be any non-empty collection of cuts which is
bounded above, say by the cut X|Y. Define

C={aecQ: forsomecut A|Beé,ac A}land D = the rest of Q.

It is easy to see that z = C|D is a cut. Clearly, it is an upper bound for
€ since the “A” for every element of £ is contained in C. Let Z =C'|\D

T There is another, related, sense in which R is complete. See Theorem 5 below.



be any upper bound for €. By the assumption that A|B < C'|D’ for all
A|B € &, we see that the “A” for every member of £ is contained in C N
Hence C C C’, so z < 7'. That is, among all upper bounds for £, z is least.

d

The simplicity of this proof is what makes cuts good. We go from Q to R
by pure thought. To be more complete, as it were, we describe the natural
arithmetic of cuts. Letcuts x = A|B and y = C|D be given. How do we add
them? subtract them? ... Generally the answer is to do the corresponding
operation to the elements comprising the two halves of the cuts, being
careful about negative numbers. The sumof x and y is x +y = E|F where

E={reQ: forsomeac Aandc e C,r =a+c}
F = the rest of Q.

It is easy to see that E|F is a cut in Q and that it doesn’t depend on the
order in which x and y appear. That is, cut addition is well defined and
x+y= y + x. The zero cut is 0* and 0* 4+ x = x for all x € R. The
additive inverse of x = A|B is —x = C|D where

C = {r € Q: for some b € B, not the smallest element of B, r = —b}
D = therest of Q.

Then (—x) +x = 0*. Correspondingly, the difference of cutsisx —y =
x + (—y). Another property of cut addition is associativity:

x+y+z=x++2).

This follows from the corresponding property of Q. .

Multiplication is trickier to define. It helps to first say that the cutx = A|B
is positive if 0* < x or negative if x < 0*. Since 0 lies in A or B, a cut is
either positive, negative, or zero. If x = A|B and y = C|D are nonnegative
cuts then their product is x - y = E|F where

E={reQ r<QordacAand3ceC

suchthata > 0,¢c > 0, and r = ac},

and F is the rest of Q. If x is positive and y is negative then we define the
product to be —(x - (—y)). Since x and —y are both positive cuts this makes
sense and is a negative cut. Similarly, if x is negative and y is positive then
by definition their product is the negative cut —((—x) - y), while if x and y
are both negative then their product is the positive cut (—x) - (-y).

e

Verifying the arithmetic properties for multiplication is tedious, to say
the least, and somehow nothing seems to be gained by writing out every
detail. (To pursue cut arithmetic further you could read Landau’s classically
boring book, Foundations of Analysis.) To get the flavor of it, let’s check the
commutativity of multiplication: x -y = y - x forcuts x = A|B, y = C|D.
If x, y are positive then

fac:aeA,ceC,a>0,c>0}={ca:ceC,ac A,c>0,a >0}
implies that x - y = y - x. If x is positive and y is negative then
x-y=—@x-(=y)=—(=y)-x)=y-x.

The second equality holds because we have already checked commutativity
for positive cuts. The remaining two cases are checked similarly. There are
eight cases to check for associativity and eight more for distributivity. All
are simple and we omit their proofs. The real point is that cut arithmetic
can be defined and it satisfies the same field properties that (¥ does:

The operation of cut addition is
well defined, natural, commutative, associative, and
has inverses with respect to the neutral element 0.
The operation of cut multiplication
is well defined, natural, commutative, associative,
distributive over cut addition, and has inverses of
nonzero elements with respect to the neutral element 1*.

By definition, a field is a system consisting of a set of elements and
two operations, addition and multiplication, that have the preceding alge-
braic properties — commutativity, associativity, etc. Besides just existing,
cut arithmetic is consistent with QQ arithmetic in the sense thatif¢,r € Q
then c* + r* = (c + r)* and c* - r* = (cr)*. By definition, this is what
we mean when we say that Q is a subfield of R. The cut order enjoys the
additional properties of

transitivity. x < y < z implies x < z.

trichotomy. Either x < y, y < x, or x = y, but only one of the

three things is true.

translation. x < y impliesx +z <y + z.
By definition, this is what we mean when we say that R is an ordered field.
Besides, the product of positive cuts is positive and cut order is consistent
with Q order: ¢* < r* if and only if ¢ < r in Q. By definition, this is what
we mean when we say that Q is an ordered subfield of R. To summarize



3 Theorem The set R of all cuts in Q is a complete ordered field that
contains QQ as an ordered subfield.

The magnitude or absolute value of x € R is

x| X ifx>0
= —x ifx < 0.

Thus, x < |x|. A basic, constantly used fact about magnitude is the follow-
ing.
4 Triangle Inequality Forallx,y € R, |x + y| < |x| + |y|.

Proof The translation and transitivity properties of the order relation imply
that adding y and —y to the inequalities x < |x| and —x < |x| gives

x+y<|x|l+y<Ix|+ 1yl
—x—y=<l|x|—y<|x|+1yl.

Since x +y < |x|+ |yl and —(x + y) < |x| + |y|, we infer that |x + y| <
|x| + |y| as asserted. O

Next, suppose we try the same cut construction in R that we did in Q.
Are there gaps in R that can be detected by cutting R with scissors? The
natural definition of a cut in R is a division .A| B where .4 and B are disjoint,
non-empty subcollections of R with AUB =R, anda < bforalla € A,
b € B. Further, A contains no largest element. Now, each b € B is an upper
bound for A. Therefore y =1.u.b.(A) existsanda < y < bforalla € A
and b € B. By trichotomy, .

AB={xeR:x<y}|{xeR:x>y).

In other words, R has no gaps. Every cut in R occurs exactly at a real
number.

Allied to the existence of R is its uniqueness. Any complete ordered field
F containing Q as an ordered subfield corresponds to R in a way preserving
all the ordered field structure. To see this, take any ¢ € F and associate to
it the cut A|B where

A={reQ:r<ginfF)}.

This correspondence makes F equivalent to R.

Upshot The real number system R exists and it satisfies the properties of
a complete ordered field; the properties are not assumed as axioms, but are
proved by logically analyzing the Dedekind construction of R. Having gone
through all this cut rigmarole, it must be remarked that it is a rare working
mathematician who actually thinks of R as a complete ordered field or as
the set of all cuts in Q. Rather, he or she thinks of R as points on the x-axis,
just as in calculus. You too should picture R this way, the only benefit of
the cut derivation being that you should now unhesitatingly accept the least
upper bound property of R as a true fact.

Note +c0 are not real numbers since QI|@ and @|Q are not cuts. Although
some mathematicians think of R together with —oo and +00 as an “ex-
tended real number system,” it is simpler to leave well enough alone and
just deal with R itself. Nevertheless, it is convenient to write expressions
like “x — 00” to indicate that a real variable x grows larger and larger
without bound.

If § is a non-empty subset of R then its supremum is its least upper bound
when S is bounded above and is said to be 400 otherwise; its infimum is
its greatest lower bound when S is bounded below and is said to be —oco
otherwise. (In Exercise 17 you are asked to invent the notion of greatest
lower bound.) By definition the supremum of the empty set is —oo. This is
reasonable, considering that every real number, no matter how negative, is
an upper bound for @, and the least upper bound should be as far leftward
as possible, namely —oo. Similarly, the infimum of the empty set is +00.
We write sup S and inf S for the supremum and infimum of S,

Cauchy sequences

As mentioned above there is a second sense in which R is complete. It
involves the concept of convergent sequences. Leta;, a5,a3, a4, - = (a,),
n € N, be a sequence of real numbers. The sequence (a,) converges to the
limit b € R as n — oo provided that for each € > 0 there exists N € N
such that foralln > N,

la, —b| < e.

The statistician’s language is evocative here. Think of n=1,2,...asa
sequence of times and say that the sequence (a,) converges to b provided
that eventually all its terms nearly equal b. In symbols,

Ve >0 EINeNsuchthatnzN:Ia,,—b|<e.



If the limit b exists it is not hard to see that it is unique, and we write

lim @, = bora, — b.
n—o00

Suppose thatlim,,_,  a, = b. Since all the numbers a, are eventually near b

they are all near each other; i.e., every convergent sequence obeys a Cauchy
condition:

Ve >0 AN € Nsuchthatn,m > N = |a, —a,| < €.

The converse of this fact is a fundamental property of R.

5 Theorem R is complete with respect to Cauchy sequences in the sense
that if (a,) is a sequence of real numbers obeying a Cauchy condition then
it converges to a limit in R.

Proof Let A be the set of real numbers comprising the sequence (a,),
A={xeR:3n eNanda, = x}.

We first observe that A is a bounded set in R. Taking € = 1 in the Cauchy
condition, there is an integer N, such thatforalln, m > Ny, |a, — a.| < 1.
Then, for each n > N,

(10) |a,, — aN,| < 1.

Clearly the finite set a, az, ..., ay,,ay, — 1,ay, + 1 is bounded, (any
finite set is bounded); say all its elements belong to the interval [—M, M].
According to (10), [—M, M] contains A so A is bounded.

Next, consider the set

S = {s € [-M, M] : Jinfinitely many n € N, for which a, > s}.

That is, a, > s infinitely often. Clearly —M € S and S is bounded above
by M. According to the least upper bound property of R there exists b € R,
b =1u.b.S . We claim that the sequence (a,) converges to b.

Given € > 0 we must show that there exists an N such thatforalln > N,
lay — b| < €. The Cauchy condition provides an N, such that

€
(11) m,n> N, = Iam—anl<§-

All elements of S are < b, so the larger number b + € /2 does not belong to
S. Only finitely often does a, exceed b + €/2. That is, for some N3 > N,

n>Ny = an‘§b+§.

Since b is a least upper bound for S, the smaller number b — €/2 can not
also be an upper bound for §. Some s € Sis > b — ¢ /2, which implies that
an > s > b — €/2 infinitely often. In particular, there exists N > N; such
thatay > b — €/2. Since N > N3, we have ay < b + €/2 and so

anv € (b—e€/2, b+¢€/2].

Since N > N,, (11) implies

la, —b| < la, —ay| + |lay —b| <,
which verifies convergence. ]

Restating Theorem 5 gives the

6 Cauchy Convergence Criterion for sequences A sequence (a,) in R
converges if and only if

Ve >0 3NeNsuchthatn,m2N=>la,,—a,,,l < e.

Further description of R

The elements of R \ Q are irrational numbers. If x js irrational and r

is rational then y = x + r is irrational. For if y is rational then so is

Y — r = x, the difference of rationals being rational. Similarly, if r #0

then rx is irrational. It follows that the reciprocal of an irrational number

is irrational. From these observations we will show that the rational and

irrational numbers are thoroughly mixed up with each other. )
Leta < b be given in R. Define the intervals (a, b) and [a, b] as

(a,b)={xeR:a <x < b)
[a,b]:{xeR:asxsb}.

7 Theorem Every interval (a, b), no matter how small, contains both ra-
tional and irrational numbers.

Proof This is certainly true of the interval (0, 1) since it contains the num-
bers 1/2 and 1/+/2. For the general interval (a, b), think of a, b as cuts
a = A|A', b = B|B'. The fact thata < b implies the set B \ A con-
tamns two distinct rational numbers, say r,s. Thusa < r < s < b. The
transformation a

T:t;—>r+(s—r)t



sends the interval (0, 1) to the interval (r, s). Sincer, s,and s —r are rational,
T sends rationals to rationals and irrationals to irrationals. That is, (r, s)

contains both rationals and irrationals, and so does the larger interval (a, b).
O

Theorem 7 expresses the fact that between any two rational numbers lies
an irrational number; and between any two irrational numbers lies a rational
number. This is a fact worth thinking about for it seems implausible at first.
Spend some time trying to picture the situation, especially in light of the
following related facts:

(a) There is no first (i.e., smallest) rational number in the interval (0, 1).

(b) There is no first irrational number in the interval (0, 1).

(c) There are strictly more irrational numbers in the interval (0, 1) (in
the cardinality sense explained in Section 4) than there are rational
numbers.

The transformation in the proof of Theorem 7 shows that the real line is

like rubber: stretch it out and it never breaks.

A somewhat obscure and trivial fact about R is its Archimedean prop-
erty: for each x € R there is an integer n that is greater than x. In other
words, there exist arbitrarily large integers. The Archimedean property is
true for Q since p/q < |p|. It follows that it is true for R. Given x = A|B,
just choose a rational number r € B and an integer n > r. Then n > x.
An equivalent way to state the Archimedean property is that there exist
arbitrarily small reciprocals of integers.

Mildly interesting is the existence of ordered fields for which the Archi-
medean property fails. One example is the field R(x) of rational functions
with real coefficients. Each such function is of the form

p(x)

q(x)
where p and g are polynomials with real coefficients and g is not the zero
polynomial. (It does not matter that g(x) = 0 at a finite number of points.)
Addition and multiplication are defined in the usual fashion of high school
algebra, and it is easy to see that R(x) is a field. The order relation on R(x)
is also easy to define. If R(x) > O for all sufficiently large x then we say
that R is positive in R(x), and if R — § is positive then we write § < R.
Since a nonzero rational function vanishes (has value zero) at only finitely
many x € R, we get trichotomy: either R = §, R < S,or § < R. (To
be rigorous, we need to prove that the values of a rational function do not
change sign for x large enough.) The other order properties are equally easy
to check, and R(x) is an ordered field.

R(x) =

IsR(x) Archimedean? That is, given R € R(x), does there exist a natural
number n € R(x) such that R < n? (A number n is the rational function
whose numerator is the constant polynomial p(x) = n, a polynomial of
degree zero, and whose denominator is the constant polynomial g(x) =
1.) The answer is “no.” Take R(x) = x/1. The numerator is x and the
denominator is 1. Clearly, we have n < x, not the opposite, so R(x) fails
to be Archimedean.

The same remarks hold for any positive rational function R = p(x)/q(x)
where the degree of p exceeds the degree of g. In R(x), R is never less than
a natural number. (You might ask yourself: exactly which rational functions
are less than n?)

The e-principle

Finally let us note a nearly trivial principle that turns out to be invaluable
in deriving inequalities and equalities in R.

8 Theorem (e-principle) If a, b are real numbers and if for each € > 0,
a < b+e thena < b. If x,y are real numbers and for each € > 0,
|x —y| <€, thenx = y.

Proof Trichotomy implies that either a < b or a > b. In the latter case we
can choose €, 0 < € < a — b and get the absurdity

e<a—b<e.

Hence a < b. Similarly, if x # y then choosing €, 0 < € < |x — y| gives
the contradiction € < |x — y| < €. Hence x = y. See also Exercise 11. [J

3 Euclidean Space

Given sets A and B, the Cartesian product of A and B is the set A x B
of all ordered pairs (a, b) such that a € A and b € B. (The name comes
from Descartes who pioneered the idea of the (x, y)-coordinate system in
geometry.) See Figure 4.

The Cartesian product of R with itself m times is denoted R™. Elements
of R™ are vectors, ordered m-tuples of real numbers, (xi, ..., x,,). In this
terminology, real numbers are called scalars and R is called the scalar field.
When vectors are added, subtracted, and multiplied by scalars according to
the rules



