Suppose that S is a closed piecewise smooth surface that bounds the space region T and let the *outer* unit normal vector field \mathbf{n} be continuous on each smooth piece of S. If the vector field \mathbf{F} is continuously differentiable on T, then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint_{T} \nabla \cdot \mathbf{F} \ dV.$$

$$\iint_{S} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy = \iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV. \tag{4}$$

4.1651

$$\iint_{S} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy = \iint_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \, dS; \quad (16)$$

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, h(x, y)) \sqrt{1 + \left(\frac{\partial h}{\partial x}\right)^{2} + \left(\frac{\partial h}{\partial y}\right)^{2}} dx dy.$$
 (9)

evaluating a surtace integral using the divergence theorem

Evaluate $\iint_S \mathbf{F} \cdot \tilde{\mathbf{n}} dS$, where $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j} + x^3 y^3 \mathbf{k}$ and S is the surface of the

tetrahedron bounded by the plane x + y + z = 1 and the coordinate planes, with outward unit normal vector \tilde{n} (see Figure 13.47).

a. The surface S

Verifying the divergence theorem for a particular solid

Let $\mathbf{F} = 2x\mathbf{i} - 3y\mathbf{j} + 5z\mathbf{k}$, and let S be the hemisphere $z = \sqrt{9 - x^2 - y^2}$ together with the disk $x^2 + y^2 \le 9$ in the xy-plane. Verify the divergence theorem.

Evaluating a surface integral over an open surface

Evaluate $\iint_S \mathbf{F} \cdot \vec{n} \, dS$, where $\mathbf{F} = xy\mathbf{i} - z^2\mathbf{k}$ and S is the surface of the upper S

faces of the unit cube $0 \le x \le 1$, $0 \le y \le 1$, $0 < z \le 1$, as shown in Figure below,

S* is the closed surface of the entire cube.

s. ioles

STOKES' THEOREM

Let S be an oriented, bounded, and piecewise smooth surface in space with positively oriented boundary C and unit normal vector field \mathbf{n} . Suppose that \mathbf{T} is a positively oriented unit vector field tangent to C. If the vector field \mathbf{F} is continuously differentiable in a space region containing S, then

$$\oint_C \mathbf{F} \cdot \mathbf{T} ds = \iint_S (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} dS.$$

5.1666

$$\oint_C P dx + Q dy + R dz$$

$$= \iint_S \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS,$$

where $\mathbf{F} = 3z\mathbf{i} + 5x\mathbf{j} - 2y\mathbf{k}$ and S is the part of the parabolic surface $z = x^2 + y^2$ that ies below the plane z = 4 and whose orientation is given by the upper unit normal vector (Fig. 15.7.4).

Using Stokes' theorem to evaluate a line integral

Evaluate $\oint_C (\frac{1}{2}y^2 dx + z dy + x dz)$, where C is the curve of intersection of the plane x + z = 1 and the ellipsoid $x^2 + 2y^2 + z^2 = 1$, oriented counterclockwise as viewed from above (see Figure 13.41).

THEOREM 1 Conservative and Irrotational Fields 5.1068

Let \mathbb{F} be a vector field with continuous first-order partial derivatives in a simply connected region D in space. Then the vector field \mathbb{F} is irrotational if and only if it is conservative; that is, $\nabla \times \mathbb{F} \equiv 0$ in D if and only if $\mathbb{F} = \nabla \phi$ for some scalar function ϕ defined on D.

Eksempel 12.4.13 Vis at vektorfeltet

$$\mathbf{F}(x, y, z) = zy \cos(xy) \mathbf{i} + zx \cos(xy) \mathbf{j} + \sin(xy) \mathbf{k}$$

er konservativt i \mathbb{R}^3 , og finn en potensialfunksjon f(x, y, z) for \mathbf{F} .

Maxwell's current density equation

In physics, it is shown that if I is the current crossing any surface S bounded by the closed curve C, then

$$\oint_C \mathbf{H} \cdot d\,\bar{r} = I \quad \text{and} \quad \iint_S \mathbf{J} \cdot \hat{n} \, dS = I$$

where **H** is the magnetic intensity, and **J** is the electric current density. Use this information to derive Maxwell's current density equation curl $\mathbf{H} = \mathbf{J}$.