A parametric curve C in the plane is a pair of functions

$$x = f(t), \quad y = g(t),$$

that give x and y as continuous functions of the real number t (the parameter) in some interval I.

OPPGADE: Et hjul med radius a > 0 triller langs x-aksen. På hjulets ytterkant er et punkt P markert med rødt. Finn en parameterfremstilling for den kurven P beskriver når hjulet triller, dersom vi starter med P i origo.

• The area under the curve:

$$A = \int_{a}^{b} y \, dx. \tag{1}$$

• The volume of revolution around the x-axis:

$$V_x = \int_a^b \pi y^2 dx.$$
 (2a)

• The volume of revolution around the y-axis:

$$V_y = \int_a^b 2\pi x y \, dx. \tag{2b}$$

• The arc length of the curve:

$$s = \int_0^s ds = \int_a^b \sqrt{1 + (dy/dx)^2} \, dx.$$
 (3)

• The area of the surface of revolution around the x-axis:

$$S_x = \int_{x=a}^b 2\pi y \, ds. \tag{4a}$$

• The area of the surface of revolution around the y-axis:

$$S_y = \int_{x=a}^b 2\pi x \, ds. \tag{4b}$$

DEFINITION Vector

A vector \mathbf{v} in the Cartesian plane is an ordered pair of real numbers that has the form $\langle a, b \rangle$. We write $\mathbf{v} = \langle a, b \rangle$ and call a and b the components of the vector \mathbf{v} .

DEFINITION Equality of Vectors

The two vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are equal provided that $u_1 = v_1$ and $u_2 = v_2$.

DEFINITION Addition of Vectors

The sum $\mathbf{u} + \mathbf{v}$ of the two vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is the vector

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle.$$

DEFINITION Multiplication of a Vector by a Scalar

If $\mathbf{u} = \langle u_1, u_2 \rangle$ and c is a real number, then the scalar multiple $c\mathbf{u}$ is the vector

$$c\mathbf{u} = \langle cu_1, cu_2 \rangle.$$

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$
,

$$3. \quad r(\mathbf{a} + \mathbf{b}) = r\mathbf{a} + r\mathbf{b},$$

4.
$$(r+s)a = ra + sa$$
,

5.
$$(rs)\mathbf{a} = r(s\mathbf{a}) = s(r\mathbf{a})$$
.

The Dot Product of Two Vectors

5,782-784

The dot product of the two vectors

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$

is the number obtained when we multiply corresponding components of ${\bf a}$ and ${\bf b}$ and add the results. That is,

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3. \tag{8}$$

Thus the dot product of two vectors is the sum of the products of their corresponding components. In the case of plane vectors $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, we simply dispense with third components and write $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$.

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^{2},$$

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a},$$

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c},$$

$$(r\mathbf{a}) \cdot \mathbf{b} = r(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (r\mathbf{b}).$$

THEOREM 1 Interpretation of the Dot Product If θ is the angle between the vectors \mathbf{a} and \mathbf{b} , then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \cos \theta.$$

OPPG: DEKOMPONER VEKTOREN

a = 43,-6,1) I EN VEKTOR

PARALLELL TIL OG EN VINKELRETT

PR G = 42,1,17.

The cross product (or vector product) of the vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ is defined algebraically by the formula

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle.$$

THEOREM 1 Perpendicularity of the Cross Product The cross product $\mathbf{a} \times \mathbf{b}$ is perpendicular both to \mathbf{a} and to \mathbf{b} .

THEOREM 2 Length of the Cross Product

Let θ be the angle between the nonzero vectors \mathbf{a} and \mathbf{b} (measured so that $0 \le \theta \le \pi$). Then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta.$$

COROLLARY Parallel Vectors

Two nonzero vectors **a** and **b** are parallel ($\theta = 0$ or $\theta = \pi$) if and only if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$

ELCS: FINN AREALET AV TREKANTEN $1 \times Y - PLANET MED HJURNER$ 1 (0,0), (1,1) 06 (-3,5) $1 \times j = k, j \times k = i, and k \times i = i.$

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \text{and} \quad \mathbf{k} \times \mathbf{i} = \mathbf{j}.$$
 $\mathbf{j} \times \mathbf{i} = -\mathbf{k}, \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i}, \quad \text{and} \quad \mathbf{i} \times \mathbf{k} = -\mathbf{j}.$ $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0},$

THEOREM 3 Algebraic Properties of the Cross Product If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors and k is a real number, then

1.
$$\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$$
;

2.
$$(k\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (k\mathbf{b}) = k(\mathbf{a} \times \mathbf{b});$$

3.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c});$$

4.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$
;

5.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

THEOREM 4 Scalar Triple Products and Volume

The volume V of the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is the absolute value of the scalar triple product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$; that is,

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|.$$

5.792-793