
LECTURE NOTES ON GENERALIZED EIGENVECTORS FOR

SYSTEMS WITH REPEATED EIGENVALUES

We consider a matrix A ∈ Cn×n. The characteristic polynomial

P (λ) = |λI −A|

admits in general p complex roots:

λ1, λ2, . . . , λp

with p ≤ n. Each of the root has a multiplicity that we denote ki and P (λ) can be
decomposed as

P (λ) = Πp
i=1(λ− λi)ki .

The sum of the multiplicity of all eigenvalues is equal to the degree of the polyno-
mial, that is,

p∑
i

ki = n.

Let Ei be the subspace of eigenvectors associated to the eigenvalue λi, that is,

Ei = {u ∈ Cn such that Au = λiu}.

Theorem 1 (from linear algebra). The dimension of Ei is smaller than the mul-
tiplicity of λi, that is,

dim(Ei) ≤ ki.

If

dim(Ei) = ki for all i ∈ {1, . . . , p},
then we can find a basis of ki independent eigenvectors for each λi, which we denote
by

ui1, u
i
2, . . . , u

i
ki .

Since
∑p
i=1 ki = n, we finally get n linearly independent eigenvectors (eigen-

vectors with distinct eigenvalues are automatically independent). Therefore the
matrix A is diagonalizable and we can solve the system dY

dt = AY by using the
basis of eigenvectors. The general solution is given by

(1) Y (t) =

p∑
i=1

eλit(a1,iu
i
1 + a2,iu

i
2 + . . .+ aki,iu

i
ki)

for any constant coefficients ai,j .

example: We consider the matrix

A =

1 0 0
0 3 1
0 −2 0


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2 GENERALIZED EIGENVECTORS

The characteristic is P (λ) = −(λ− 2)(λ− 1)2 and we have two eigenvalues, λ1 = 2
(with multiplicity 1) and λ2 = 1 (with multiplicity 2). We compute the eigenvectors
for λ1 = 2. We have to solve−1 0 0

0 1 1
0 −2 −2

xy
z

 = 0

It yields two independent relations (Hence, the dimension of E1 = n − 2 = 1),
namely

x = 0

y + z = 0

Thus, u = (0, 1,−1) is an eigenvector for λ1 = 2. We compute the eigenvectors for
λ2 = 1. We have to solve 0 0 0

0 2 1
0 −2 −1

xy
z

 = 0

It yields one independent relation, namely

2y + z = 0.

Hence, the dimension of E2 is equal to n− 1 = 2. The two independent vectors

u12 = (1, 0, 0)

u22 = (0, 1,−2)

form a basis for E2. Finally, the general solution of dY
dt = AY is given by

Y (t) = a1e
2t

 0
1
−1

+ a2e
t

1
0
0

+ a3e
t

 0
1
−2

 .

End of example.

If for some i, dim(Ei) < ki, then we cannot find ki independent eigenvectors in Ei.
We say that the eigenvalue λi is incomplete. In this case, we are not able to find
n linearly independent eigenvectors and cannot get an expression like (1) for the
solution of the ODE. We have to use generalized eigenvectors.

example: We consider

A =

(
−2 1
0 −2

)
.

The characteristic polynomial is P (λ) = (λ+2)2 and there is one eigenvalue λ1 = −2
with multiplicity 2. We compute the eigenvectors. We have to solve(

0 1
0 0

)(
x
y

)
= 0

It yields one independent relation, namely

y = 0

and therefore the dimension of E1 is 1 and A is not diagonalizable. An eigenvector
is given by u1 = (1, 0).

We know that Y1(t) = eλ1tu1 is a solution. Let us look for solutions of the type

Y (t) = teλtu+ eλtv
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for two unknown vectors u and v different from zero. Such Y is solution if and only
if

eλtu+ λteλtu+ λeλtv = teλtAu+ eλtAv

for all t. It implies that we must have

Au = λu(2)

Av = u+ λv.(3)

The first equality implies (because we want u 6= 0) that u is an eigenvector and λ
is an eigenvalue. We take λ = λ1 and u = u1. Let us compute v. We have to solve(

0 1
0 0

)(
x
y

)
=

(
1
0

)
which yields

y = 1

We take (for example) v = (0, 1) and we have that

Y2(t) = teλ1tu1 + eλ1tv = te−2t

(
1
0

)
+ e−2t

(
0
1

)
is a solution. Since Y1(0) and Y2(0) are independent, a general solution is given by

Y (t) = a1e
−2t

(
1
0

)
+ a2

(
te−2t

(
1
0

)
+ e−2t

(
0
1

))
=

(
a1e

−2t + a2te
−2t

a2e
−2t.

)
for any constant a1, a2 in R. End of example.

In the previous example, note that v satisfies

(4) (A− λI)2v = 0 and (A− λI)v 6= 0.

A vector which satisfies (4) is a generalized eigenvector. Let us give now the general
definition of such vectors.

Definition 2. For a given eigenvalue λ, the vector u is a generalized eigenvector
of rank r if

(A− λI)ru = 0

(A− λI)r−1u 6= 0.

Remark: An eigenvector is a generalized eigenvector of rank 1. Indeed, we have
(A− λI)u = 0 and u 6= 0.

Given an generalized eigenvector u of rank r, let us define the vectors v1, . . . , vr as
follows

(5)

vr = (A− λI)0u = u

vr−1 = (A− λI)1u

...

v1 = (A− λ)r−1u

Note that v1 is an eigenvector as v1 6= 0 and (A − λI)v1 = (A − λ)ru = 0. The
vectors v1, . . . , vr form a chain of generalized eigenvectors of length r.
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Definition 3. Given an eigenvalue λ, we say that v1, v2, . . . , vr form a chain of
generalized eigenvectors of length r if v1 6= 0 and

(6)

vr−1 = (A− λI)vr

vr−2 = (A− λI)vr−1

...

v1 = (A− λI)v2

0 = (A− λI)v1

Remark: Given a chain {vi}ri=1, the first element, that is, v1, is allways an eigen-
value. By using the definition (6), we get that

(7) (A− λI)i−1vi = v1

and therefore the element vi is a generalized vector of rank i .

Theorem 4. The vectors in a chain of generalized eigenvectors are linearly inde-
pendent.

Proof. We consider the linear combination

(8)

r∑
i=1

aivi = 0.

By using the definition (6), we get that

vi = (A− λI)r−ivr

so that (8) is equivalent to

(9)

r∑
i=1

ai(A− λI)r−ivr = 0.

We want to prove that all the ai are equal to zero. We are going to use the fact
that

(10) (A− λI)mu = 0 for all m ≥ r.
Indeed,

(A− λI)mvr = (A− λI)m−r(A− λI)rvr = (A− λI)m−r(A− λI)v1 = 0.

Now, we apply (A− λI)r−1 to (9) and get

(11)

r∑
i=1

ai(A− λI)2r−i−1vr = 0.

Since (A− λI)2r−i−1vr = 0 for i ≤ r − 1, the equation (11) simplifies and we get

ar(A− λI)r−1vr = arv1 = 0

Hence, ar = 0 because v1 6= 0. Now, we know that ar = 0 so that (9) rewrites as

(12)

r−1∑
i=1

ai(A− λI)r−ivr = 0.

We apply (A− λI)r−2 to (12) and obtain that

r−1∑
i=1

ai(A− λI)2r−i−2vr = ar−1(A− λI)r−1vr = ar−1v1 = 0.
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because (A − λI)2r−i−2vr = 0 for i ≤ r − 2. Therefore, ar−1 = 0. We proceed
recursively with the same argument and prove that all the ai are equal to zero so
that the vectors vi are linearly independent. �

A chain of generalized eigenvectors allow us to construct solutions of the system of
ODE. Indeed, we have

Theorem 5. Given a chain of generalized eigenvector of length r, we define

X1(t) = v1e
λt

X2(t) = (tv1 + v2)eλt

X3(t) =

(
t2

2
v1 + tv2 + v3

)
eλt

...

Xr(t) =

(
tr−1

(r − 1)!
v1 + . . .+

t2

2
vr−2 + tvr−1 + vr

)
eλt

The functions {Xi(t)}ri=1 form r linearly independent solutions of dX
dt = AX.

Proof. We have

Xj(t) = eλt

(
j∑
i=1

tj−i

(j − i)!
vi

)
.

We use the convention that v0 = 0 and, with this convention, we can check from
(6) that

Avi = vi−1 + λvi

for i = {1, . . . , r}. We have, on one hand,

Ẋj(t) = eλt
j−1∑
i=1

tj−i−1

(j − i− 1)!
vi + eλt

j∑
i=1

λ
tj−i

(j − i)!
vi

and, on the other hand,

AXj(t) = eλt
j∑
i=1

tj−1

(j − i)!
Avi

= eλt
j∑
i=1

tj−i

(j − i)!
(vi−1 + λvi)

= eλt
j∑
i=1

tj−i

(j − i)!
vi−1 + eλt

j∑
i=1

λ
tj−i

(j − i)!
vi

= eλt
j−1∑
i=1

tj−i−1

(j − i− 1)!
vi + eλt

j∑
i=1

λ
tj−i

(j − i)!
vi.

Hence, Xi is a solution. To prove that Xi(t) are independent, it is enough to prove
that Xi(0) = vi are independent. This follows from Theorem 4. �

Conclusion: A chain of generalized eigenvectors of length r gives us r
independent solutions.
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It turns out that there exist enough chains of generalized eigenvectors to obtain a
complete set of independent solutions. This is the content of the following theorem.

Theorem 6 (from linear algebra). For an eigenvalue λ of multiplicity k, there exist
p chains, which we denote

v11
v12
......
v1r1

, v21
v22
...
v2r2

, . . . , vp1
vp2
...

vprp

such that the {vji } are all linearly independent and
∑p
i ri = k. Here ri denotes the

length of the ith chain.

Conclusion: For a general matrix (see first page), we have p eigenvalues, {λi}pi=1,
where each of them has mutliplicity ki. The sum of the multiplicities is equal to
the dimension of the system n, that is,

∑p
i=1 ki = n. For each eigenvalue λi, we

compute ki independent solutions by using Theorems 5 and 6. We finally obtain
n independent solutions and find the general solution of the system of ODEs.

The following theorem is very usefull to determine if a set of chains consist of
independent vectors.

Theorem 7 (from linear algebra). Given p chains, which we denote in the same

way as in Theorem 6, the vectors {vji } are independent if and only if the

v11 , v21 , . . . , vp1

are independent. This statement also holds if the chains correspond to different
eigenvalues.

The proof of this theorem (in the case of the same eigenvalue) is of the same flavor
as the proof of theorem 4.

Theorem 6 says that there exists a basis where the matrix can be rewritten as

D =



λ1 1
. . .

. . .

. . . 1
λ1

. . .

λq 1
. . .

. . .

. . . 1
λq



In this matrix, the only non zero entries are on the diagonal and the superdiagonal.
The diagonal is made of the eignvalues while the superdiagonal contains either zero
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or one. For any matrix A, there exists therefore a matrix D of the form above and
a change of base matrix P such that A writes

A = P−1DP.

This decomposition of an arbitrary matrix in an allmost diagonal matrix of this
type is called the Jordan decomposition.

The question is now: How do we compute the p chains of generalized eigen-
vectors of Theorem 6?

We use the following theorem of linear algebra.

Theorem 8 (from linear algebra). Given an eigenvalue λ of multiplicity k, let m
be the dimension of the the subspace of eigenvectors. Then, for any generalized
eigenvector u, we have

(A− λI)k−m+1u = 0.

Basically, this theorem says that when we have a generalized eigenvector u of rank
r (and therefore (A − λI)ru = 0 and (A − λI)r−1u 6= 0 ) then r cannot be larger
than k −m+ 1.

Now, we can present an algorithm to find the chains of independent generalized
eigenvectors of Theorem 6 for a given eigenvalue λ.

First, we compute the eigenvectors and find the dimension m of the subspace of
eigenvectors. We compute (A− λI)k−m+1.

Let E be a collection of independent chains that we are going to construct iteratively.

We start with a collection E that contains a basis of eigenvectors (they have been
computed previously). Recall that an eigenvector is also a chain of length 1.

While the collection E does not contain a total number of k vectors, do

• Find a vector u satisfying (A − λI)k−m+1u = 0 and which is independent
of the vectors that are contained in (the chains of) E .

• Compute (A−λI)ju until we find the largest j, that we denote r, such that

(A− λI)ru = 0 and (A− λI)ru 6= 0.

Thus, u is a generalized vector of rank r.
• Construct the chain

vr = u

vr−1 = (A− λI)u

...

v1 = (A− λI)r−1u.

• If there is a subset of chains in E which are not linearly independent with
the chain {v1, . . . , vr} (use Theorem 7 to test it) then remove among those
chains the one with the smallest length otherwise do nothing. Add the
chain {v1, . . . , vr} to the collection E .
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end do

Note that the number of vectors in E strictly increases at each interation in the
while-loop so that the loop will stop in a finite number of iteration.

example We consider  2 1 0
−1 0 0
0 0 1


We compute the characteristic polynomial and find P (λ) = (λ−1)3. Hence, λ1 = 1
is an eigenvalue of multiplicity 3. We compute the eigenvectors. We have to solve 1 1 0

−1 −1 0
0 0 0

xy
z

 = 0

We obtain one independent relation, namely,

x = −y
and therefore the dimension of E1 is equal to n− 1 = 2. We have that

u1 =

0
0
1

 and u2 =

 1
−1
0


are two independant eigenvectors. Our collection of chain E consist now of the
eigenvalues u1 and u2, that is,

E = {{u1}, {u2}}.
We compute and get (A−λ1I)2 = 0. Hence, for any vector u, we have (A−λ1I)2u =
0. We choose (for example) u = (1, 0, 0) so that u is linearly independent of u1 and
u2. We get

(A− λ1I)v =

 1
−1
0


and we get the chain

v2 = u, v1 = (A− λ1I)u = u1

We remove from E the chain {u1} as the vector which composes this chain is linearly
dependent of the vectors of the chain {v1, v2}. We add the chain {v1, v2}. We end
up with

E = {{v1, v2}, {u2}}.
We now have a basis {v1, v2, u2} of R3 whose vectors can be ordered in chains. By
applying theorem 5, we get that

X(t) = a1e
tu2 + a2e

tv1 + a3e
t(tv1 + v2)

= a1e
t

0
0
1

+ a2e
t

 1
−1
0

+ a3e
t

t+ 1
−t
0


= et

a2 + a3(t+ 1)
−a2 − a3t

a1


is a general solution.


