Differensialligninger (KAP2)

1) HOMOGEN
\[y'' + p(x)y' + q(x)y = 0 \]
\[p, q, r \text{ kontinuerlige på } I \]

Eksistens og entydighet:
1) med initialbetingelse
\[y(x_0) = k_0, y'(x_0) = k_1, (x_0 \in I) \]
har en entydig løsning \(y(x) \) på \(I \)

Generell løsning:
\[y_n = c_1 y_1 + c_2 y_2 \]
\(y_1(x), y_2(x) \) basis av løsninger

Metoder:
1) \[y'' + a y' + b y = 0 \]
 \[\alpha \text{ og } b \text{ konstanter} \]
 Karakteristikk ligning \(\lambda^2 + a \lambda + b = 0 \)
 tabell (K2.3) / nettsidenotat

2) \[x^2 y'' + a x y' + b y = 0 \]
 Euler-Cauchy \(y = x^m \)
 Hjelpelinje \(m^2 + (a - 1)m + b = 0 \)

3) Gitt en løsning \(y_1(x) \),
 finn \(y_2 = u(x)y_1 \)
 (reduksjon av orden)

2) INHOMOGEN
\[y'' + p(x)y' + q(x)y = r(x) \]

Tilsvarende for (2)

\[y = y_n + y_p \]
én partikulær løsning

Finne \(y_p \):
1) \(r(x) \) i tabell (K2.7) / nettsidenotat
 ubestemte koeff. metode
 (NB: modifikasjonstregel)
ellers: variasjon av parameter

Variasjon av parameter
\[y_p = u(x) y_1 + v(x) y_2 \]

linjeringssystem for \(u', v' \)
ellert formel i K2.10
Swingninger (K2.4, 2.8)

A Frie swingninger
 (i) uten demping
 \[y_h'' + cy' + ky = 0 \]
 \[y_h'' + ky = 0 \]
 \[y_h = A \cos \omega_0 t + B \sin \omega_0 t = C \cos(\omega_0 t - \phi) \]
 \[\omega_0 = \sqrt{k/m} \] (harmonisk swingning)

 (ii) med demping
 \[c > 0 \]
 I overdemping (reelle \(\lambda_1 \neq \lambda_2 \))
 II kritisk demping (reelle \(\lambda_1 = \lambda_2 \))
 III underdemping (komplekse \(\lambda \))

B Tvunge swingninger
 \[y'' + cy' + ky = f_0 \cos \omega t \] periodisk ytre kraft

 (i) uten demping, \(c = 0 \)
 \[\omega \neq \pm \omega_0 : \quad y_p = A \cos \omega_0 t + B \sin \omega_0 t \]
 \[y = y_h + y_p \] (to harmoniske swingninger)
 \[y = \pm \omega_0 : \quad y_p = t (A \cos \omega_0 t + B \sin \omega_0 t) \]
 \[\lim_{t \to \infty} y_p \to \infty \text{ når } t \to \infty \]

 (ii) med demping, \(c > 0 \)
 \[y_p = A \cos \omega_0 t + B \sin \omega_0 t \] (stasjonær løsning)
 \[y_h \to 0 \text{ når } t \to \infty \] (steady state)