Reduced Echelon Matrices

A matrix is called a reduced echelon matrix if it is an echelon matrix and in addition

- (i) each leading entry equals 1,
- (ii) each leading entry is the only nonzero element in its column.

Solution of Linear systems by Gauss-Jordan Elimination

Apply elementary row operations to the augmented coefficient matrix

$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	$a_{12} \\ a_{22}$	•••	$a_{1n} \\ a_{2n}$	$\begin{vmatrix} b_1 \\ b_2 \end{vmatrix}$
	• • •	•••	• • •	•••
$\lfloor a_{m1}$	a_{m2}	•••	a_{mn}	b_m _

to obtain a row-equivalent reduced echelon matrix.

Each matrix is row-equivalent to a unique reduced echelon matrix.