Matrix Operations

Addition of Matrices

If $A=[a_{ij}]$ and $B=[b_{ij}]$ are matrices of the same size then their sum A+B is the matrix obtained by adding corresponding elements of A and B,

$$A+B=[a_{ij}+b_{ij}]$$

Multiplication of a Matrix by a Number

If $A = [a_{ij}]$ is a matrix and c is a number then cA is the matrix obtained by multiplying each element of A by c,

$$cA = [ca_{ij}]$$

Matrix Multiplication

Suppose that $A = [a_{ij}]$ is an $n \times p$ matrix and $B = [b_{ij}]$ is a $p \times m$ matrix. Then the product AB is an $n \times m$ matrix such that the element of AB in its ith row and jth column is the sum of products of corresponding elements of the ith row of A and the jth row of B,

$$AB = [c_{ij}] = [a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj}]$$