Linear Combinations

Definition A vector *w* is called a linear combination of vectors $v_1, v_2, ..., v_k$ if there exist constants $c_1, c_2, ..., c_k$ such that $w = c_1v_1 + c_2v_2 + ... + c_kv_k$.

Theorem If $v_1, v_2, ..., v_k$ are vectors in a vector space then the set W of all linear combinations of $v_1, v_2, ..., v_k$ is a subspace of the vector space.

W is called the span of the set $S = \{v_1, v_2, \dots, v_k\},$ W=span{ v_1, v_2, \dots, v_k }.

Linear Independence

Defenition Vectors $v_1, v_2, ..., v_k$ in a vector space V are said to be linearly independent if the equation $c_1v_1+c_2v_2+...+c_kv_k=0$ has only the trivial solution.

Vectors v_1 , v_2 , ..., v_k are linearly dependent if there exist constants c_1 , c_2 , ..., c_k not all zeros such that $c_1v_1+c_2v_2+...+c_kv_k=0$.